http://iet.metastore.ingenta.com
1887

Robust H consensus analysis of a class of second-order multi-agent systems with uncertainty

Robust H consensus analysis of a class of second-order multi-agent systems with uncertainty

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Control Theory & Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study is concerned with consensus problems for a class of multi-agent systems with second-order dynamics. Some dynamic neighbour-based rules are adopted for the agents with the consideration of parameter uncertainties and external disturbances. Sufficient conditions are derived to make all agents asymptotically reach consensus while satisfying desired H performance. Finally, numerical simulations are provided to show the effectiveness of our theoretical results.

References

    1. 1)
      • T. Vicsek , A. Cziroók , E. Ben-Jacob , O. Cohen , I. Shochet . Novel type of phase transition in a system of self-deriven particles. Phys. Rev. Lett. , 6 , 1226 - 1229
    2. 2)
      • A. Jadbabaie , J. Lin , A.S. Morse . Coordination of groups of mobile autonomous agents using nearest neighbour rules. IEEE Trans. Autom. Control , 6 , 988 - 1001
    3. 3)
      • L. Moreau . Stability of multi-agent systems with time-dependent communication links. IEEE Trans. Autom. Control , 2 , 169 - 182
    4. 4)
      • W. Ren , R.W. Beard . Consensus seeking in multi-agent systems under dynamically changing interaction topologies. IEEE Trans. Autom. Control , 5 , 655 - 661
    5. 5)
      • Blondel, V.D., Hendrickx, J.M., Olshevsky, A., Tsitsiklis, J.N.: `Convergence in multiagent coordination, consensus, and flocking', Proc. IEEE Conf. on Decision and Control, 2005, p. 2996–3000.
    6. 6)
      • Moreau, L.: `Stability of continuous-time distributed consensus algorithm', Proc. IEEE Conf. on Decision and Control, 2004, p. 3998–4003.
    7. 7)
      • Fang, L., Antsaklis, P.J.: `Information consensus of asynchronous discrete-time multi-agent systems', Proc. American Control Conf., 2005, p. 1883–1888.
    8. 8)
      • Angeli, D., Bliman, P.A.: `Extension of a result by Moreau on stability of leaderless multi-agent systems', Proc. IEEE Conf. on Decision and Control, and the European Control Conf., 2005, p. 759–764.
    9. 9)
      • Cao, M., Morse, A.S., Anderson, B.D.O.: `Reaching an agreement using delayed information', Proc. IEEE Conf. on Decision and Control, 2006, p. 3375–3380.
    10. 10)
      • Tanner, H.G., Christodoulakis, D.K.: `State synchronization in local-interaction networks is robust with respect to time delays', Proc. IEEE Conf. on Decision and Control, and the European Control Conf., 2005, p. 4945–4950.
    11. 11)
      • R. Olfati-Saber , R. Murray . Consensus problems in networks of agents with switching topology and time-delays. IEEE Trans. Autom. Control , 9 , 1520 - 1533
    12. 12)
      • Bliman, P., Ferrari-Trecate, G.: `Average consensus problems in networks of agents with delayed communications', Proc. IEEE Conf. on Decision and Control, 2005, p. 7066–7071.
    13. 13)
      • P. Lin , Y. Jia . Average-consensus in networks of multi-agents with both switching topology and coupling time-delay. Physica A , 1 , 303 - 313
    14. 14)
      • R. Olfati-Saber . Flocking for multi-agent dynamic systems: algorithms and theory. IEEE Trans. Autom. Control , 3 , 410 - 420
    15. 15)
      • W. Ren , E. Atkins . Distributed multi-vehicle coordinated control via local information exchange. Int. J. Robust and Nonlinear Control , 1002 - 1033
    16. 16)
      • Z. Qu , J. Wang , R.A. Hull . Cooperative control of dynamical systems with application to autonomous vehicles. IEEE Trans. Autom. Control , 4 , 894 - 911
    17. 17)
      • D.V. Dimarogonas , K.J. Kyriakopoulos . On the rendezvous problem for multiple nonholonomic agents. IEEE Trans. Automatic Control , 5 , 916 - 922
    18. 18)
      • Su, H., Wang, X.: `Second-order consensus of multiple agents with coupling delay', Proc. 7th World Congress on Intelligent Control and Automation, 2008, p. 7181–7186.
    19. 19)
      • G. Xie , L. Wang . Consensus control for a class of networks of dynamic agents. Int. J. Robust Nonlinear Control , 941 - 959
    20. 20)
      • G. Lafferriere , A. Williams , J. Caughman , J.J.P. Veerman . Decentralized control of vehicle formations. Syst. Control Lett. , 9 , 899 - 910
    21. 21)
      • P. Lin , Y. Jia , J. Du , S. Yuan . Distributed control of multi-agent systems with second-order agent dynamics and delay-dependent communications. Asian J. Control , 2 , 254 - 259
    22. 22)
      • Ren, W.: `On consensus algorithms for double-integrator dynamics', Proc. 46th IEEE Conf. on Decision and Control, 2007, p. 2295–2300.
    23. 23)
      • P. Lin , Y. Jia , L. Li . Distributed robust H∞ consensus control in directed networks of agents with time-delay. Syst. Control Lett. , 8 , 643 - 653
    24. 24)
      • P. Ögren , E. Fiorelli , N.E. Leonard . Cooperative control of mobile sensor networks: adaptive gradient climbing in a distributed environment. IEEE Trans. Autom. Control , 8 , 1292 - 1302
    25. 25)
      • Y. Hong , J. Hu , L. Gao . Tracking control for multi-agent consensus with an active leader and variable topology. Automatica , 7 , 1177 - 1182
    26. 26)
      • N. Biggs . (1993) Algebraic graph theory.
    27. 27)
      • S. Boyd , L.E. Ghaoui , E. Feron , V. Balakrishnan . (1994) Linear matrix inequalities in system and control theory.
    28. 28)
      • Goh, K.C., Turan, L., Safonov, M.G., Papavassilopoulos, G.P., Ly, J.H.: `Baffine matrix inequality properties and computational methods', Proc. American Control Conf., 1994, p. 850–855.
    29. 29)
      • Ibaraki, S., Tomizuka, M.: `Rank minimization approach for solving BMI problems with random search', Proc. American Control Conf., 2001, p. 1870–1875.
    30. 30)
      • S. Kanev , C. Scherer , M. Verhaegen , B. De Schutter . Robust output-feedback controller design via local BMI optimization. Automatica , 7 , 1115 - 1127
    31. 31)
      • J. Hale . (1977) Theory of functional differential equations.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2008.0492
Loading

Related content

content/journals/10.1049/iet-cta.2008.0492
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address