http://iet.metastore.ingenta.com
1887

Switched delay-dependent control policy for water-quality systems

Switched delay-dependent control policy for water-quality systems

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Control Theory & Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

A delay-dependent analysis and synthesis approach is established for a class of linear discrete-time switched systems with time-varying delays using switched Lyapunov–Krasovskii functionals (SLKFs). The problem of water-quality control is cast as the problem of delay-dependent ℒ2 gain analysis and synthesis. New delay-dependent asymptotic stability criteria are developed under arbitrary switching based on appropriately constructed SLKFs. Delay-dependent switched control feedback is then designed, based on state- and output-measurements, to render the corresponding switched closed-loop system delay-dependent asymptotically stable with a prescribed ℒ2 gain measure. The developed results are cast as linear matrix inequalities and tested by Matlab simulation on a representative water-quality example.

References

    1. 1)
      • F.A. Cuzzola , M. Morari , M.D. Di Benedetto , A.L. San Giovanni-Vincentelli . (2001) A generalized approach for analysis and control of discrete-time piecewise affine and hybrid systems.
    2. 2)
      • R. DeCarlo , M. Branicky , S. Pettersson , B. Lennartson . Perspectives and results on the stability and stabilizability of hybrid systems. Proc. IEEE , 1069 - 1082
    3. 3)
      • A. Benzaouia , E. De Santis , P. Caravani , N. Daraoui . Constrained control of switching systems: a positive invariant approach. Int. J. Control , 1379 - 1387
    4. 4)
      • M. Branicky . Multiple Lyapunov functions and other analysis tools for switched and hybrid systems. IEEE Trans. Automat. Control , 4 , 475 - 582
    5. 5)
      • J. Daafouz , P. Riedinger , C. Lung . Stability analysis and control synthesis for switched systems: a switched Lyapunov function approach. IEEE Trans. Automat. Control , 1883 - 1887
    6. 6)
      • M. Johansoon , A. Rantzer . Computation of piecewise quadratic Lyapunov functions for hybrid systems. IEEE Trans. Automat. Control , 555 - 559
    7. 7)
      • X.D. Koutsoukos , P.J. Antsaklis . Design of stabilizing switching control laws for discrete and continuous-time linear systems using piecewise-linear Lyapunov functions. Int. J. Control , 932 - 945
    8. 8)
      • D. Liberzon , A.S. Morse . Basic problems in stability and design of switched systems. IEEE Control Syst. Mag. , 5 , 59 - 70
    9. 9)
      • C.D. Persis , R.D. Santis , A.S. Morse . Supervisory control with state-dependent dwell-time logic and constraints. Automatica , 269 - 275
    10. 10)
      • Z. Sun , S.S. Ge . Analysis and synthesis of switched linear control systems. Automatica , 181 - 195
    11. 11)
      • Zhai, G., Hu, B., Yasuda, K., Michel, A.N.: `Qualitative analysis of discrete switched systems', Proc. American Control Conf., 8–10 May 2002, p. 1880–1885.
    12. 12)
      • M.S. Mahmoud . (2000) Robust control and filtering for time-delay systems.
    13. 13)
      • E.K. Boukas , M.S. Mahmoud . A practical approach to control of nonlinear discrete-time state-delay systems. Optim. Control Appl. Methods , 1 - 21
    14. 14)
      • V. Kapila , W.M. Haddad . Memoryless ℋ∞ controllers for discrete-time systems with time-delay. Automatica , 5 , 1141 - 1144
    15. 15)
      • M.S. Mahmoud . Robust ℋ∞ control of discrete systems with uncertain parameters and unknown delays. Automatica , 627 - 635
    16. 16)
      • M.S. Mahmoud , L. Xie . Guaranteed cost control of uncertain discrete systems with delays. Int. J. Control , 2 , 105 - 114
    17. 17)
      • W.H. Chen , Z.H. Guan , X. Lu . Delay-dependent guaranteed cost control for uncertain discrete-time systems with delay. IEE Proc.-Control Theory Appl. , 412 - 416
    18. 18)
      • E. Fridman , U. Shaked . Delay-dependent ℋ∞ control of uncertain discrete delay systems. Eur. J. Control , 29 - 37
    19. 19)
      • H. Gao , T. Chen . New results on stability of discrete-time systems with time-varying state-delay. IEEE Trans. Automat. Control , 328 - 334
    20. 20)
      • S. Boyd , L. El Ghaoui , E. Feron , V. Balakrishnan . (1994) Linear matrix inequalities in control.
    21. 21)
      • Leite, V.J.S., Miranda, M.F.: `Stabilization of discrete time-varying delay systems: a convex parameter dependent approach', Proc. American Control Conf., 11–13 June 2008, p. 4934–4939.
    22. 22)
      • Miranda, M.F., Leite, V.J.S.: `Convex analysis and synthesis for uncertain discrete-time systems with time-varying state-delay', Proc. American Control Conf., 11–13 June 2008, p. 4910–4915.
    23. 23)
      • Montagner, V.F., Leite, V.J.S., Tarbouriech, S., Peres, P.L.D.: `Stability and stabilization of discrete-time linear systems with state-delay', Proc. American Control Conf., 8–11 June 2005, p. 3806–3811.
    24. 24)
      • T. Signh , S.R. Vadali . Robust time-delay control of multimode systems. Int. J. Control , 2 , 1319 - 1339
    25. 25)
      • L. Zhang , P. Shi , E.K. Boukas . ℋ∞ output-feedback control for switched linear discrete-time systems with time-varying delays. Int. J. Control , 1354 - 1365
    26. 26)
      • M.S. Mahmoud , M.N. Nounou , H.N. Nounou . Analysis and synthesis of uncertain switched discrete-time systems. IMA J. Math. Control Inf. , 245 - 257
    27. 27)
      • S. Pettersson , B. Lennartson . Hybrid system stability and robustness verification using linear matrix inequalities. Int. J. Control , 1335 - 1355
    28. 28)
      • J. Hattingh , M. Claassen . Securing water quality for life. Int. J. Water Resour. Dev. , 401 - 405
    29. 29)
      • J. Milot , M.J. Rodriguez , J.B. Serodes Song . Contribution of neural networks for modeling trihalomethanes occurrence in drinking water. J. Water Resour. Plan. Manage. , 370 - 376
    30. 30)
      • V.R. Subbaroo Vemula , P.P. Mujumdar , S. Ghosh . Risk evaluation in water quality management of a river system. J. Water Resour. Plan. Manage. , 411 - 423
    31. 31)
      • Y.Y. Haimes . (1977) Hierarchical analyses of water resources systems.
    32. 32)
      • M.F. Hassan , M.S. Mahmoud , M.I. Younis . A dynamic Leontief modeling approach to management for optimal utilization in water resources systems. IEEE Trans. Syst., Man Cybern. , 552 - 558
    33. 33)
      • M.S. Mahmoud , M.F. Hassan . A decentralized water quality control scheme. IEEE Trans. Syst., Man Cybern. , 694 - 702
    34. 34)
      • M.S. Mahmoud , S.J. Saleh . Regulation of water quality standards in streams by decentralized control. Int. J. Control , 525 - 540
    35. 35)
      • M.S. Mahmoud , M.F. Hassan , S.J. Saleh . Decentralized structures for stream water quality control problems. Optim. Control Appl. Methods , 167 - 186
    36. 36)
      • P. Gahinet , A. Nemirovski , A. Laub , M. Chilali . (1995) LMI control toolbox.
    37. 37)
      • S.H. Song , J.K. Kim . ℋ∞ control of discrete-time linear systems with norm-bounded uncertainties and time-delay in state. Automatica , 137 - 139
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2008.0474
Loading

Related content

content/journals/10.1049/iet-cta.2008.0474
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address