http://iet.metastore.ingenta.com
1887

Unified bound on the order of controllers using matrix pencil characterisation

Unified bound on the order of controllers using matrix pencil characterisation

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Control Theory & Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study concerns the existence and design of reduced-order controllers for a rather general class of continuous- and discrete-time control design problems which can be characterised by the linear matrix inequality (LMI) framework. From a matrix pencil perspective, this paper presents a unified bound on the order of controllers in terms of the minimal rank of two matrix pencils valued at their generalised eigenvalues at infinity and in the unstable region (the closed right-half plane for continuous-time systems and the region excluding the open unit circle for discrete-time systems). When full-order controllers exist, such matrix pencil characterisation-based bound reveals the existence of reduced-order controllers if one of two subsystems of the generalised plant has infinite zeros or unstable invariant zeros. A numerical example of obtaining reduced-order controllers for the covariance upper bound control problem is given. This study provides a more complete view of the role of infinite zeros or unstable invariant zeros in feedback systems.

References

    1. 1)
      • H. Kimura , Y. Lu , R.J. Kawatani . On the structure of H∞ control systems and related extensions. IEEE Trans. Autom. Control , 653 - 667
    2. 2)
      • D.W. Gu , B.W. Choi , I. Postlethwaite . Low-order stabilizing controllers. IEEE Trans. Autom. Control , 1713 - 1717
    3. 3)
      • B.W. Choi , D.W. Gu , I. Postlethwaite . Low-order H∞ suboptimal controllers. IEE Proc. Control Theory Appl. , 243 - 248
    4. 4)
      • K. Zhou , J.C. Doyle , K. Glover . (1996) Robust and optimal control.
    5. 5)
      • L. Xie , W.Y. Yan , Y.C. Soh , L. Li . Design of optimal reduced order filter for unstable discrete time systems. IEE Proc. Control Theory Appl. , 397 - 404
    6. 6)
      • J. Lam , H. Gao , C. Wang . H∞ model reduction of linear systems with distributed delay. IEE Proc. Control Theory Appl. , 662 - 674
    7. 7)
      • S. Boyd , L.E. Ghaoui , E. Feron , V. Balakrishnan . (1994) Linear matrix inequalities in system and control theory.
    8. 8)
      • P. Gahinet , A. Nemirovski , A.J. Laub , M. Chilali . (1995) LMI control toolbox – for use with MATLAB.
    9. 9)
      • R.E. Skelton , T. Iwasaki , K.M. Grigoriadis . (1998) A unified algebraic approach to linear control design.
    10. 10)
      • X. Xin . Reduced-order controllers for the H∞ control problem with unstable invariant zeros. Automatica , 319 - 326
    11. 11)
      • J.S. Thorp . The singular pencil of a linear dynamical system. Int. J. Control , 577 - 596
    12. 12)
      • S. Jaffe , N. Karcanias . Matrix pencil characterization of almost (A, B)-invariant subspaces: a classification of geometric concepts. Int. J. Control , 51 - 93
    13. 13)
      • P. Van Dooren . The generalized eigenstructure problem in linear system theory. IEEE Trans. Autom. Control , 111 - 129
    14. 14)
      • J.S. Freudenberg , J.S. Looze . Right half plane poles and zeros and design tradeoffs in feedback systems. IEEE Trans. Autom. Control , 555 - 565
    15. 15)
      • J. Chen . Sensitivity integral relations and design trade-offs in linear multivariable feedback systems. IEEE Trans. Autom. Control , 1700 - 1716
    16. 16)
      • K. Havre , S. Skogestad . Achievable performance of multivariable systems with unstable zeros and poles. Int. J. Control , 1131 - 1139
    17. 17)
      • F.R. Gantmacher . (1959) Matrix theory.
    18. 18)
      • C.B. Schrader , M.K. Sain . Research on system zeros: a survey. Int. J. Control , 1407 - 1433
    19. 19)
      • G.W. Stewart , J.-G. Sun . (1990) Matrix perturbation theory.
    20. 20)
      • P. Van Dooren . The computation of Kronecker's canonical form of a singular pencil. Linear Algebra Appl. , 103 - 140
    21. 21)
      • L. El Ghaoui , F. Oustry , M. AitRami . A cone complementary linearization algorithm for static output-feedback and related problems. IEEE Trans. Autom. Control , 1171 - 1176
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2008.0373
Loading

Related content

content/journals/10.1049/iet-cta.2008.0373
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address