http://iet.metastore.ingenta.com
1887

Gain-scheduled ℋ2 and ℋ control of discrete-time polytopic time-varying systems

Gain-scheduled ℋ2 and ℋ control of discrete-time polytopic time-varying systems

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Control Theory & Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study presents ℋ2 and ℋ performance analysis and synthesis procedures for the design of both gain-scheduled and robust static output feedback controllers for discrete-time linear systems with time-varying parameters. The obtained controllers guarantee an upper bound on the ℋ2 or ℋ performance of the closed-loop system. As an immediate extension, the mixed ℋ2/ℋ guaranteed cost control problem is also addressed. The scheduling parameters vary inside a polytope and are assumed to be a priori unknown, but measured in real-time. If bounds on the rate of parameter variation are known, they can be taken into account, providing less conservative results. The geometric properties of the polytopic domain are exploited to derive finite sets of linear matrix inequalities (LMIs) based on the existence of a parameter-dependent Lyapunov function. An application of the methodology to a realistic vibroacoustic problem, with experimentally obtained data, illustrates the benefits of the proposed approach and shows that the techniques can be used for real engineering problems.

References

    1. 1)
      • W.J. Rugh , J.S. Shamma . Research on gain scheduling. Automatica , 10 , 1401 - 1425
    2. 2)
      • J.S. Shamma , M. Athans . Guaranteed properties of gain scheduled control for linear parameter-varying plants. Automatica , 3 , 559 - 564
    3. 3)
      • P. Apkarian , R.J. Adams . Advanced gain-scheduling techniques for uncertain systems. IEEE Trans. Control Syst. Technol. , 1 , 21 - 32
    4. 4)
      • P. Apkarian , P. Gahinet , G. Becker . Self-scheduled ℋ∞ control of linear parameter-varying systems – a design example. Automatica , 9 , 1251 - 1261
    5. 5)
      • A. Packard . Gain scheduling via linear fractional transformations. Syst. Contr. Lett. , 2 , 79 - 92
    6. 6)
      • D.J. Leith , W.E. Leithead . Survey of gain-scheduling analysis and design. Int. J. Control , 11 , 1001 - 1025
    7. 7)
      • J.S. Shamma , M. Athans . Gain scheduling: potential hazards and possible remedies. IEEE Control Syst. Mag. , 3 , 101 - 107
    8. 8)
      • C.W. Scherer . LPV control and full block multipliers. Automatica , 3 , 361 - 375
    9. 9)
      • N. Aouf , D.G. Bates , I. Postlethwaite , B. Boulet . Scheduling schemes for an integrated flight and propulsion control system. Control Eng. Pract. , 1 , 685 - 696
    10. 10)
      • R.A. Nichols , R.T. Reichert , W.J. Rugh . Gain scheduling for H-infinity controllers: a flight control example. IEEE Trans. Control Syst. Technol. , 2 , 69 - 79
    11. 11)
      • De Caigny, J., Camino, J.F., Paijmans, B., Swevers, J.: `An application of interpolating gain-scheduling control', Proc. third IFAC Symp. Syst., Struct. and Control (SSSC07), October 2007, (cdrom).
    12. 12)
      • I. Kaminer , P.P. Khargonekar , M.A. Rotea . Mixed ℋ2/ℋ∞ control for discrete-time systems via convex optimization. Automatica , 1 , 57 - 70
    13. 13)
      • Peres, P.L.D., Geromel, J.C., Souza, S.R.: `ℋ', Proc. 1994 Amer. Control Conf., 1994, p. 2429–2433.
    14. 14)
      • V.F. Montagner , R.C.L.F. Oliveira , V.J.S. Leite , P.L.D. Peres . LMI approach for ℋ∞ linear parameter-varying state feedback control. IEE Proc. Control Theory Appl. , 2 , 195 - 201
    15. 15)
      • J. Daafouz , J. Bernussou . Parameter dependent Lyapunov functions for discrete time systems with time varying parametric uncertainties. Syst. Contr. Lett. , 5 , 355 - 359
    16. 16)
      • V.J.S. Leite , P.L.D. Peres . Robust control through piecewise Lyapunov functions for discrete time-varying uncertain systems. Int. J. Control , 3 , 230 - 238
    17. 17)
      • R.C.L.F. Oliveira , P.L.D. Peres . Time-varying discrete-time linear systems with bounded rates of variation: Stability analysis and control design. Automatica , 11 , 2620 - 2626
    18. 18)
      • F. Wu , X.H. Yang , A. Packard , G. Becker . Induced L2-norm control for LPV systems with bounded parameter variation rates. Int. J. Robust Nonlinear Control , 983 - 998
    19. 19)
      • Montagner, V.F., Oliveira, R.C.L.F., Peres, P.L.D.: `Design of ℋ', Proc. 45th IEEE Conf. Decision Control, December 2006, p. 5839–5844.
    20. 20)
      • F. Amato , M. Mattei , A. Pironti . Gain scheduled control for discrete-time systems depending on bounded rate parameters. Int. J. Robust Nonlinear Control , 473 - 494
    21. 21)
      • Montagner, V.F., Oliveira, R.C.L.F., Leite, V.J.S., Peres, P.L.D.: `Gain scheduled state feedback control of discrete-time systems with time-varying uncertainties: an LMI approach', Proc. 44th IEEE Conf. Decision Control – Eur. Control Conf. 2005, December 2005, p. 4305–4310.
    22. 22)
      • W. Xie . ℋ2 gain scheduled state feedback for LPV system with new LMI formulation. IEE Proc. Control Theory Appl. , 6 , 693 - 697
    23. 23)
      • C.E. de Souza , A. Trofino . Gain-scheduled ℋ2 controller synthesis for linear parameter varying systems via parameter-dependent Lyapunov functions. Int. J. Robust Nonlinear Control , 5 , 243 - 257
    24. 24)
      • V.F. Montagner , R.C.L.F. Oliveira , P.L.D. Peres , P.-A. Bliman . Linear matrix inequality characterisation for ℋ∞ and ℋ2 guaranteed cost gain-scheduling quadratic stabilisation of linear time-varying polytopic systems. IET Control Theory Appl. , 6 , 1726 - 1735
    25. 25)
      • M.C. de Oliveira , J.C. Geromel , J. Bernussou . Extended ℋ2 and ℋ∞ norm characterizations and controller parameterizations for discrete-time systems. Int. J. Control , 9 , 666 - 679
    26. 26)
      • De Caigny, J., Camino, J.F., Oliveira, R.C.L.F., Peres, P.L.D., Swevers, J.: `Gain-scheduled ℋ', Proc. 47th IEEE Conf. Decision Control, December 2008, p. 3872–3877.
    27. 27)
      • De Caigny, J., Camino, J.F., Oliveira, R.C.L.F., Peres, P.L.D., Swevers, J.: `Gain scheduled ℋ', Congresso Brasileiro de Automática, September 2008, (cdrom).
    28. 28)
      • M. Green , D.J.N. Limebeer . (1996) Linear robust control.
    29. 29)
      • Barbosa, K.A., de Souza, C.E., Trofino, A.: `Robust ℋ', Proc. 2002 Amer. Control Conf., May 2002, p. 3224–3229.
    30. 30)
      • C.E. de Souza , K.A. Barbosa , A. Trofino . Robust ℋ∞ filtering for discrete-time linear systems with uncertain time-varying parameters. IEEE Trans. Signal Process. , 6 , 2110 - 2118
    31. 31)
      • A.A. Stoorvogel . The robust ℋ2 control problem: a worst-case design. IEEE Trans. Autom. Control , 9 , 1358 - 1370
    32. 32)
      • L. Ghaoui , S. Niculescu . (2000) Advances in linear matrix inequality methods in control.
    33. 33)
      • T. Kailath . (1980) Linear systems.
    34. 34)
      • C. Scherer , P. Gahinet , M. Chilali . Multiobjective output-feedback control via LMI optimization. IEEE Trans. Autom. Control , 7 , 896 - 911
    35. 35)
      • Löfberg, J.: `YALMIP: a toolbox for modeling and optimization in MATLAB', Proc. 2004 IEEE Int. Symp. on Comput. Aided Control Syst. Des., September 2004, p. 284–289, Available at http://control.ee.ethz.ch/~joloef/yalmip.php.
    36. 36)
      • J.F. Sturm . Using SeDuMi 1.02, A MatLab toolbox for optimization over symmetric cones. Optim. Meth. Softw. , 1 , 625 - 653
    37. 37)
      • Donadon, L.V., Siviero, D.A., Camino, J.F., Arruda, J.R.F.: `Comparing a filtered-X LMS and an ℋ', Proc. Int. Conf. Noise Vibr. Engin., September 2006, p. 199–210.
    38. 38)
      • De Caigny, J., Camino, J.F., Swevers, J.: `Identification of MIMO LPV models based on interpolation', Proc. Int. Conf. Noise Vibr. Engin., September 2008, p. 2631–2644.
    39. 39)
      • J. De Caigny , J.F. Camino , J. Swevers . Interpolating model identification for SISO linear parameter varying systems. Mech. Syst. Signal Process. , 8 , 2395 - 2417
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2008.0364
Loading

Related content

content/journals/10.1049/iet-cta.2008.0364
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address