Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Magnetic momentum management for a geostationary satellite platform

Magnetic momentum management for a geostationary satellite platform

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Control Theory & Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The attitude control system of three-axis stabilised geostationary platforms is usually based on a set of reaction wheels, the operation of which requires periodic desaturation manoeuvres in order to dump the angular momentum accumulated because of external secular disturbance torques. The need for such manoeuvres can be minimised by careful design of the satellite platform. In this paper, the control issues associated with the adoption of a magnetic actuator for (partial) momentum dumping on a geostationary platform are discussed, with specific reference to the robustness issues arising due to the highly uncertain space environment at geostationary earth orbit altitude.

References

    1. 1)
      • X. Chen , W. Steyn , S. Hodgart , Y. Hashida . Optimal combined reaction-wheel momentum management for Earth-pointing satellites. J. Guid. Control Dyn. , 4 , 543 - 550
    2. 2)
      • A.C. Stickler , K.T. Alfriend . An elementary magnetic attitude control system. J. Spacecr. Rockets , 5 , 282 - 287
    3. 3)
      • M. Lovera . Optimal magnetic momentum control for inertially pointing spacecraft. Eur. J. Control , 1 , 30 - 39
    4. 4)
      • A. Megretski , A. Rantzer . System analysis via integral quadratic constraints. IEEE Trans. Autom. Control , 6 , 819 - 830
    5. 5)
      • H. Hablani . Pole-placement technique for magnetic momentum removal of earth-pointing spacecraft. J. Guid. Control Dyn. , 2 , 268 - 275
    6. 6)
      • S. Pautonnier . (2006) Angular momentum management for GEO HR missions.
    7. 7)
      • E. Silani , M. Lovera . Magnetic spacecraft attitude control: a survey and some new results. Control Eng. Prac. , 3 , 357 - 371
    8. 8)
      • Kao, C.Y., Megretski, A., Jonsson, U.T., Rantzer, A.: `A MATLAB toolbox for robustness analysis', 2004 IEEE Int. Symp. Computer Aided Control Systems Design, 2004.
    9. 9)
      • M. Sidi . (1997) Spacecraft dynamics and control.
    10. 10)
      • T.F. Burns , H. Flashner . Adaptive control applied to momentum unloading using the low Earth orbit environment. J. Guid. Control Dyn. , 2 , 325 - 333
    11. 11)
      • H.K. Khalil . (1988) Nonlinear systems.
    12. 12)
      • T. Kailath . (1980) Linear systems.
    13. 13)
      • P.J. Camillo , F.L. Markley . Orbit-averaged behavior of magnetic control laws for momentum unloading. J. Guid. Control Dyn. , 6 , 563 - 568
    14. 14)
      • Jönsson, U.: `Lecture notes on integral quadratic constraints', 2001, Technical Report, Royal Institute of Technology, Stockholm.
    15. 15)
      • Otter, M., Elmqvist, H., Mattsson, S.E.: `The new Modelica multibody library', Proc. Third Int. Modelica Conference, 2003, Linkping, Sweden.
    16. 16)
      • O. Montenbruck , E. Gill . (2000) Satellite orbits: models, methods, applications.
    17. 17)
      • Lovera, M.: `Object-oriented modelling of spacecraft attitude and orbit dynamics', 54thInternational Astronautical Congress, 2003, Bremen, Germany.
    18. 18)
      • National Geophysical Data Center. GOES Space Environment Monitor.
    19. 19)
      • M. Lovera . Control-oriented modelling and simulation of spacecraft attitude and orbit dynamics. J. Math. Comput. Modelling Dyn. Sys. Spec. Issue Modular Physical Modelling , 1 , 73 - 88
    20. 20)
      • J.R. Wertz , J.R. Wertz . (1984) Spacecraft attitude determination and control.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2008.0327
Loading

Related content

content/journals/10.1049/iet-cta.2008.0327
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address