Quantum optimal control of nuclei in the presence of perturbation in electric field

Access Full Text

Quantum optimal control of nuclei in the presence of perturbation in electric field

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Control Theory & Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The quantum optimal control of nuclei (nucleon and meson) in the presence of perturbations in control field is investigated. The nucleon and meson interaction is given by Klein–Gordon–Schrödinger systems with dissipative and damping terms. A rational physical model is proposed for controlling two particles. Suppose the amplitude of perturbation is bounded, optimal quantum control pairing are found theoretically and computationally. A stable semi-discrete algorithm is developed to execute computational simulations for illustrating the feasibility of theoretic control design.

Inspec keywords: optimal control; quantum computing; Schrodinger equation; discrete systems; control system synthesis; perturbation theory; quantum theory; meson-nucleus reactions

Other keywords: control field; meson; rational physical model; stable semidiscrete algorithm; nuclei; computational simulations; theoretic control design; electric field; quantum optimal control; nucleon; perturbation; Klein-Gordon-Schrodinger systems

Subjects: Optimal control; Control system analysis and synthesis methods; Quantum computation; Discrete control systems; Solutions of wave equations: bound state in quantum theory; Quantum computing theory

References

    1. 1)
      • W. Warren , H. Rabitz , M. Dahleh . Coherent control of quantum dynamics: the dream is alive. Science , 12 , 1581 - 1585
    2. 2)
      • B.S. Lee . Perturbation expansion in quantum meachanics. Am. J. Phys. , 10 , 1012 - 1014
    3. 3)
      • J.L. Lions . (1971) Optimal control of systems governed by partial differential equations.
    4. 4)
      • W. Heisenberg . Production of mesons as a shock wave problems. Phys. Bd. , 1 - 17
    5. 5)
      • J. Leite Lopes . The nucleon megnetic moment in meson pair theories. Phys. Rev. , 1 , 36 - 39
    6. 6)
      • R. Dautary , J.L. Lions . (1992) Mathematical analysis and numerical methods for science and technology.
    7. 7)
      • Q.F. Wang . Numerical approximate of optimal control for distributed diffusion Hopfield neural networks. Int. J. Numer. Method Eng. , 3 , 443 - 468
    8. 8)
      • H. Yukawa . On the interaction of elementary particle. Jpn Phys. Math. J. , 48 - 56
    9. 9)
      • Q.F. Wang . Theoretical and computational issue of optimal control for distributed Hopfield neural network equations with diffusion term. SIAM J. Sci. Comput. , 890 - 911
    10. 10)
      • Wang, Q.F.: `Control problem for nonlinear systems given by Klein–Gordon–Maxwell equations with electromagnetic field', 46thIEEE Conf. Decision and Control, 2007, p. 6370–6375.
    11. 11)
      • J.A. Soriano , A.M. Lobeiro . On a transmission problem for dissipative Klein–Gordon–Shrödinger equations. Bol. Soc. Paran. Mat. (3s.) , 1 , 79 - 90
    12. 12)
      • Rabitz, H.A.: `Algorithms for closed loop control of quantum dynamics', IEEE Int. Conf. Decision and Control, 2000, p. 937–941.
    13. 13)
      • Wang, Q.F.: `Quantum optimal control of nonlinear dynamics systems described by Klein–Gordon–Schrödinger equations', Proc. American Control Conf., 2006, p. 1032–1037.
    14. 14)
      • D. Yao , J. Shi . Projection operator approach to time-independent perturbation theory in quantum mechanics. Am. J. Phys. , 3 , 278 - 281
    15. 15)
      • R. Temam . (1997) Infinite-dimensional dynamical systems in mechanics and physics.
    16. 16)
      • A. Peirce , M. Dahleh . Optimal control of quantum-mechanical systems: existence, numerical approximation and applications. Phys. Rev. , 12 , 4950 - 4956
    17. 17)
      • A. Peirce , M. Dahleh , H.A. Rabitz . Optimal control of uncertain quantum systems. Phys. Rev. A , 3 , 1065 - 1079
    18. 18)
      • Q.F. Wang , D. Cheng . Numerical solution of damped nonlinear Klein–Gordon equations using variational method and finite element approach. Appl. Math. Comput. , 1 , 381 - 401
    19. 19)
      • H. Zhang , H.A. Rabitz . Robust optimal control of quantum molecular systems in the persence of disturbances and uncertainties. Phys. Rev. A , 4 , 2241 - 2254
    20. 20)
      • A. Borzi , G. Stadler . Optimal quantum control in nanostructures: theory and application to a generic three-level system. Phy. Rev. A
    21. 21)
      • M. Demiralp , H.A. Rabitz . Optimally controlled quantum molecular dynamics: a perturbation formulation and the existence of multiple solutions. Phys. Rev. A , 2 , 809 - 816
    22. 22)
      • A. Assion , T. Baumert , M. Bergt . Control of chemical reactions by feedback optimized phase-shaped femtosecond laser pulses. Science , 919 - 922
    23. 23)
      • L.S. Lasdon , S.K. Mitter , A.D. Warren . The conjugate gradient method for optimal control problems. IEEE Trans. Autom. Control AC , 132 - 138
    24. 24)
      • Wang, Q.F., Rabitz, H.A.: `Quantum optimal control for the Klein–Gordon–Schrödinger dynamics system in the presence of disturbances and uncertainties', Gordon Research Conf. Quantum Control of Light and Matter, Poster, 2007.
    25. 25)
      • I.R. Sola , H.A. Rabitz . The influence of laser field noise on controlled quantum dynamics. J. Chem. Phys. , 9009 - 9016
    26. 26)
      • C. Bardeen . Optimal quantum control in nanostructures: theory and application to a generic three-level system. Chem. Phys. Lett. , 151 - 158
    27. 27)
      • D. Daems , S. Guerin , H.R. Jauslin , A. Keller , O. Atabek . Time-dependednt perturbation theory for pulse-driven quantum dynamics in atomic or molecular systems. Phys. Rev. A
    28. 28)
      • S.A. Rice , M.S. Zhao . (2000) Optical control of molecular dynamics.
    29. 29)
      • P. Gross . Teaching lasers to control molecules in the presence of laboratory field uncertainty and measurement imprecision. J. Chem. Phys. , 45 - 57
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2008.0292
Loading

Related content

content/journals/10.1049/iet-cta.2008.0292
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading