Stable weights dynamics for a class of differential neural network observer

Access Full Text

Stable weights dynamics for a class of differential neural network observer

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Control Theory & Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The most important aspect of differential neural networks dynamics is related to their weights properties. This is a consequence of the complex non-linear structure describing the learning matrix differential equations, which are associated with adaptive capability of this kind of neural network. So far, there is no analytical demonstration about the weights stability. In fact, this is the main inconvenience in designing real applications for differential neural network observers. This study deals with the stability proof for the weights dynamics using an adaptive procedure to adjust the weights ordinary differential equations. Three different examples (two of them were realised by numerical simulations and the last one was carried out using real biofiltering process data) demonstrated the good performance of the suggested approach.

Inspec keywords: observers; neural nets; matrix algebra; stability; differential equations

Other keywords: weights dynamics stability; differential neural network observer; nonlinear structure; adaptive capability; learning matrix differential equations; biofiltering process data

Subjects: Simulation, modelling and identification; Linear algebra (numerical analysis); Differential equations (numerical analysis); Neural nets (theory)

References

    1. 1)
      • W. Yu , M. Moreno , X. Li . Observer-based neuro identifier. IEE Proc. Control Theory Appl. , 145 - 152
    2. 2)
      • V. Vapnik . (1995) The nature of statistical learning theory.
    3. 3)
      • Derdiyok, A., Yan, Z., Guven, M., Utkin, V.: `A sliding mode speed and rotor time constant observer for induction machines', IECON'01: The 27th Annual Conf. of the IEEE Industrial Electronics Society, 2001.
    4. 4)
      • S. Haykin . (1999) Neural networks. A comprehensive foundation.
    5. 5)
      • D. Luenberger . Obseving the state of linear sistems. IEEE Trans. Military Electron. , 74 - 90
    6. 6)
      • R.P.N. Rao . Bayesian computation in recurrent neural circuits. Neural Comput. , 1 , 1 - 38
    7. 7)
      • J. Raol . Parameter estimation of state space models by recurrent neural networks. IEE Proc. Control Theory Appl. , 2 , 114 - 118
    8. 8)
      • M. Vidyasagar . Randomized algorithms for robust controller synthesis using statistical learning theory. Automatica , 10 , 1515 - 1528
    9. 9)
      • A. Meghdari , D. Naderi , M.R. Alam . Neural network based observer for real time tipover estimation. Mechatronics , 989 - 1004
    10. 10)
      • A. Levant . Sliding order and sliding accuracy in sliding mode control. Int. J. Control , 6 , 1247 - 1263
    11. 11)
      • J.P. Gauthier , G. Bornard . Observability for any u(t) of a class of nonlinear systems. IEEE Trans. Aut. Control , 922 - 926
    12. 12)
      • A.S. Poznyak , J. Medel . Matrix forgetting with adaptation. Int. Journal of Systems Science , 8 , 865 - 878
    13. 13)
      • A.S. Poznyak , J. Medel . Matrix forgetting factor. Int. J. Systems Science , 2 , 165 - 174
    14. 14)
      • Hovakimyan, N., Rysdyk, R., Calise, J.: `Dynamic neural networks for ooutput feedback control', Technical, 2004, School of Aerospace Engineering Georgia Institute of Technology.
    15. 15)
      • A. Poznyak , E. Sanchez , W. Yu . (2001) Differential neural networks for robust nonlinear control (identification, state estimation an trajectory tracking).
    16. 16)
      • K. Narendra , K. Parthasarathy . Identification and control of dynamical systems using neural networks. IEEE Trans. Neural Netw. , 4 - 27
    17. 17)
      • G. Park , Z. Bien . Neural network based fuzzy observer with application to facial analysis. Pattern Recogn. Lett. , 93 - 105
    18. 18)
      • A.F. Fillipov . (1998) Differential equations with disscontinuos right-hand side.
    19. 19)
      • T. Poznyak , I. Chairez , A. Poznyak . Application of a neural observer to phenols ozonation in water: simulation and kinetic parameters identification. Water Res. , 2611 - 2620
    20. 20)
      • A. Krener , A. Isidori . Linealization by output injection and nonlinear observers. Systems Control Lett. , 47 - 52
    21. 21)
      • F. Abdollahi , H.A. Talebi , R.V. Patel . A stable neural network based observer with applications to flexible-joint manipulators. IEEE Trans. Neural Netw. , 118 - 129
    22. 22)
      • J.J. Slotine , J.K. Hedrik , E.A. Misava . On sliding observers for nonlinear systems. ASME J. Dyn. Syst., Meas. Control , 245 - 252
    23. 23)
      • Poznyak, A., Escobar, J., Shtessel, Y.: `Stochastic sliding modes identification', Proc. 2006 Workshop on Variable Structure Systems, June 2006, Alghero, Italy, p. 5–9.
    24. 24)
      • Haiqing, W., Congwei, L., Fahai, L., Lixiang, W.: `A new flux observer of induction motor by hinf optimization', 36thIAS Annual Meeting. Conference Record on Industry Applications Conference, 2001.
    25. 25)
      • J. Davila , L. Fridman , A. Levant . Second-order sliding-mode observer for mechanical systems. IEEE Trans. Autom. Control , 1785 - 1789
    26. 26)
      • W.T. Miller , R.S. Sutton , P.J. Werbos . (1990) Neural networks for control.
    27. 27)
      • U.T. Eden , L.M. Frank , V. Solo , E.N. Brown . Dynamic analysis of neural encoding by point process adaptive filtering. Neural Comput. , 971 - 998
    28. 28)
      • J. Tani . Model-based learning for mobile robot navigation from the dynamical system perspective. IEEE Trans. Syst., Man Cybern. , 3 , 421 - 436
    29. 29)
      • F.L. Lewis , A. Yesildirek , K. Liu . Multilayer neural-net robot controller with guaranteed tracking performance. IEEE Trans. Neural Netw. , 2 , 1 - 11
    30. 30)
      • G. Rovithakis , M. Christodoulou . Adaptive control of unknown plants using dynamical neural networks. IEEE Trans. Syst., Man Cyben. , 400 - 412
    31. 31)
      • Y.S. Boutalis , O. Kosmidou . A feedback linearization technique by using neural networks: application to bioprocess control. J. Comput. Methods Sci. Eng. , 269 - 282
    32. 32)
      • B. Jayanand , V. Subrahmanyam . Sensorlees direct vector control of induction motor using a kalman filter trained neuro observer. Int. J. Eng. Intell. Syst. Electr. Eng. Commun. , 1 , 57 - 64
    33. 33)
      • L. Jingchuan , X. Longya , Z. Zheng . An adaptive sliding-mode observer for induction motor sensorless speed control. IEEE Trans. Ind. Appl. , 1039 - 1046
    34. 34)
      • P.J. Antsaklis . Guest editor's introduction. IEEE Control Syst. Mag. , 5 - 7
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2008.0261
Loading

Related content

content/journals/10.1049/iet-cta.2008.0261
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading