http://iet.metastore.ingenta.com
1887

Stability analysis and H control for uncertain stochastic piecewise-linear systems

Stability analysis and H control for uncertain stochastic piecewise-linear systems

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Control Theory & Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The problem of the stochastic stability and H control for uncertain stochastic piecewise-linear systems is studied. The stability analysis is based on Lyapunov functions that are continuous and piecewise quadratic. It is shown that the stability in the mean square for uncertain stochastic piecewise-linear systems can be established if a piecewise quadratic Lyapunov function can be constructed, and moreover, the function can be obtained by solving a set of linear matrix inequalities (LMIs) that are numerically feasible. It is also demonstrated via a numerical example that the stability result based on the piecewise quadratic Lyapunov functions is less conservative than that based on the common quadratic Lyapunov functions. The H controllers can also be designed by solving a set of bilinear matrix inequalities (BMIs) based on the powerful piecewise quadratic Lyapunov function.

References

    1. 1)
      • J.I. Imura , A. van der Schaft . Characterization of well-posedness of piecewise-linear systems. IEEE Trans. Autom. Control , 1600 - 1619
    2. 2)
      • M. Johansson , A. Rantzer . Computation of piecewise quadratic Lyapunov functions for hybrid systems. IEEE Trans. Autom. Control , 555 - 559
    3. 3)
      • A. Rantzer , M. Johansson . Piecewise linear quadratic optimal control. IEEE Trans. Autom. Control , 629 - 637
    4. 4)
      • S.P. Banks , S.A. Khathur . Structure and control of piecewise-linear systems. Int. J. Control , 2 , 667 - 686
    5. 5)
      • E.D. Sontag . Nonlinear regulation: the piecewise linear approach. IEEE Trans. Autom. Control , 346 - 357
    6. 6)
      • L.O. Chua , A. Deng . Canonical piecewise-linear modeling. IEEE Trans. Circuits Syst. , 511 - 525
    7. 7)
      • L.O. Chua , R. Ying . Canonical piecewise-linear analysis. IEEE Trans. Circuits Syst. , 125 - 140
    8. 8)
      • G. Feng . Stability analysis of piecewise discrete-time linear systems. IEEE Trans. Autom. Control , 7 , 1108 - 1112
    9. 9)
      • G. Feng . Controller design and analysis of uncertain piecewise-linear systems. IEEE Trans. Circuits Syst. I , 2 , 224 - 232
    10. 10)
      • M. Chen , C.R. Zhu , G. Feng . Linear-matrix-inequality-based approach to H∞ controller synthesis of uncertain continuous-time piecewise linear systems. IEE Proc., Control Theory Appl. , 3 , 295 - 301
    11. 11)
      • Y. Zhu , D.Q. Li , G. Feng . H∞ controller synthesis of uncertain piecewise continuous-time linear systems. IEE Proc., Control Theory Appl. , 5 , 513 - 519
    12. 12)
      • Rodrigues, L., Gollu, N.: `Analysis and state feedback control for PWA systems with additive noise', American Control Conf., June 2006, Minneapolis, MN, USA, p. 5438–5433.
    13. 13)
      • H.S. Zhang , D. Zhang , L.H. Xie , J. Lin . Robust filtering under stochastic parametric uncertainties. Automatica , 9 , 1583 - 1589
    14. 14)
      • S.L. Xie , L.H. Xie . Decentralized stabilization of a class of interconnected stochastic nonlinear systems. IEEE Trans. Autom. Control , 1 , 132 - 137
    15. 15)
      • W. Zhang , B.S. Chen , C.S. Tseng . Robust H∞ filtering for nonlinear stochastic systems. IEEE Trans. Signal Process. , 2 , 589 - 598
    16. 16)
      • D. Hinriechsen , A.J. Pritchard . Stochastic H∞. SIAM J. Control. Optim. , 1504 - 1538
    17. 17)
      • S.Y. Xu , T.W. Chen . Robust H-infinity control for uncertain stochastic systems with state delay. IEEE Trans. Autom. Control , 12 , 2089 - 2094
    18. 18)
      • S.Y. Xu , L. Jam , T.W. Chen . Robust H∞ control for uncertain discrete stochastic time-delay systems. Syst. Control Lett. , 203 - 215
    19. 19)
      • E. Gershon , U. Shaked , I. Yaesh . H∞ control and filtering of discrete-time stochastic systems with multiplicative noise. Automatica , 409 - 417
    20. 20)
      • B.S. Chen , W. Zhang . Stochastic H2/H∞ control with state-dependent noise. IEEE Trans. Autom. Control , 1 , 45 - 57
    21. 21)
      • W.H. Zhang , B.S. Chen . State feedback H∞ control for a class of nonlinear stochastic systems. Siam J. Control, Optim. , 6 , 1973 - 1991
    22. 22)
      • W.H. Zhang , H.S. Zhang , B.S. Chen . Generalized Lyapunov equation approach to state-dependent stochastic stabilization/detectability critrion. IEEE Trans. Autom. Control , 7 , 1630 - 1642
    23. 23)
      • M. Johansson . (2003) Piecewise linear control systems.
    24. 24)
      • Goh, K.C., Turan, L., Safonov, M.G., Papavassilopoulos, G.P., Ly, J.H.: `Biaffine matrix inequality properties and computational methods', Proc. Amer. Control Conf., 1994, Baltimore, MD, p. 850–855.
    25. 25)
      • M. Kocvara , M. Stingl . PENNON: A code for convex nonlinear and semidefinite programming. Optimization Methods Soft. , 3 , 317 - 333
    26. 26)
      • Lofberg, J.: `YALMIP: A toolbox for modeling and optimization in MATLAB', Proc. CACSD Conf., 2004, Taipei, Taiwan.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2008.0200
Loading

Related content

content/journals/10.1049/iet-cta.2008.0200
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address