http://iet.metastore.ingenta.com
1887

Coupled linear parameter varying and flatness-based approach for space re-entry vehicles guidance

Coupled linear parameter varying and flatness-based approach for space re-entry vehicles guidance

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Control Theory & Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

An linear parameter varying guidance method for the hypersonic phase of a space re-entry vehicle is presented. The suggested guidance scheme, relying on flatness approach, is applied to the non-linear model of the European Atmospheric Re-entry Demonstrator. It is shown that the overall guidance scheme achieves robust stability and performance, even in the presence of entry point kinematics dispersions. The design problem is formulated and solved using a finite set of linear matrix inequalities. Finally, Monte Carlo simulation results are presented to demonstrate the effectiveness of the suggested approach.

References

    1. 1)
      • F.J. Regan , S.M. Anandakrishnan . (1993) Dynamics of atmospheric re-entry.
    2. 2)
      • Arrington, J.P., Jones, J.J.: `Shuttle performance: lessons learned', Proc. NASA conf., 1983, Hampton, USA, NASA, p. 2283.
    3. 3)
      • J. Harpold , C. Graves . Shuttle entry guidance. J. Astronaut. Sci. , 27 , 239 - 268
    4. 4)
      • K.D. Mease , J. Kremer . Shuttle entry guidance revisited using nonlinear geometric methods. AIAA J. Guid., Control Dyn. , 17 , 1350 - 1356
    5. 5)
      • P. Lu . Entry guidance and trajectory control for reusable launch vehicle. AIAA J. Guid., Control and Dyn. , 20 , 143 - 149
    6. 6)
      • Neckel, T., Talbot, C., Petit, N.: `Collocation and inversion for a reentry optimal control problem', Proc. Fifth Int. Conf. Launcher Technology, 2003, Madrid, Spain, ESA.
    7. 7)
      • Petit, N., Milam, M., Murray, R.: `Inversion based trajectory optimization', Proc. Fifth IFAC Symp. Nonlinear Control Systems Design, 2001, St Petersburg, Russia, IFAC, p. 2767–2774.
    8. 8)
      • R. Murray , J. Hauser , A. Jadbabaie , M. Milam , N. Petit , W. Dunbar , R. Franz , T. Samad , G. Balas . (2003) Online control customization via optimization-based control, Software-enabled control, information technology for dynamical systems.
    9. 9)
      • F. Chaplais , N. Petit . Inversion in indirect optimal control of multivariable systems. ASAIM: Control, Optimisation and Calculus of Variations , 2 , 294 - 317
    10. 10)
      • Carson, J., Epstein, M., MacMynowski, D., Murray, R.: `Optimal nonlinear guidance with inner-loop feedback for hypersonic re-entry', Proc. 2006 American Control Conference, 2006, USA, AIAA/CIRA, p. 6.
    11. 11)
      • P. Apkarian , P. Gahinet . A convex characterization of gain-scheduled h∞ controllers. IEEE Trans. Automatic Control , 40 , 853 - 864
    12. 12)
      • J.M. Biannic , P. Apkarian , W.L. Garrard . Parameter-varying control of high performance aircraft. AIAA J. Guid., Control Dyn. , 20 , 225 - 231
    13. 13)
      • M. Fliess , J. Lévine , P. Martin , P. Rouchon . Flatness and defect of non-linear systems: introduction theory and examples. Int. J. Control , 61 , 1327 - 1361
    14. 14)
      • Smith, R.P.: `Functional control law design using exact non-linear dynamic inversion', Proc. AIAA Guidance, Navigation and Control Conference, 1994, Scottsdale, USA, AIAA, p. 481–489.
    15. 15)
      • J. Levine . (2006) On necessary and sufficient conditions for differential flatness.
    16. 16)
      • Morio, V., Cazaurang, F., Zolghadri, A.: `On the formal characterization of reduced-order at outputs over an ore algebra', Proc. IEEE Multi conf. Systems and Control, 2008, San Antonio, TX, USA, IEEE, p. 208–214.
    17. 17)
      • Antritter, F., Lévine, J.: `Towards a computer algebraic algorithm for at output determination’. ISSAC'08', Proc. 21st Int. Sym. Symbolic and Algebraic Computation, 2008, New York, NY, USA, ACM, p. 7–14.
    18. 18)
      • M. Fliess , J. Lévine , P. Martin , P. Rouchon . A lie-backlund approach to equivalence and flatness of nonlinear systems. IEEE Trans. Autom. Control , 44 , 922 - 937
    19. 19)
      • van Nieuwstadt, M., Murray, R.M.: `Real time trajectory generation for differentially flat systems', Proc. 34th IEEE Control and Decision Conference, 1995, New Orleans, USA, IEEE, p. 4224–4230.
    20. 20)
      • M. Fliess , J. Lévine , P. Martin , P. Rouchon . Generalized controller canonical forms for linear and nonlinear dynamics. IEEE Trans. Autom. Control , 35 , 994 - 1001
    21. 21)
      • V. Hagenmeyer , E. Delaleau . Robustness analysis of exact feedforward linearization based on differential flatness. Automatica , 39 , 1941 - 1946
    22. 22)
      • L.E. Ghaoui , G. Scorletti . Control of rational systems using linear fractional representations and linear matrix inequalities. Automatica , 39 , 1273 - 1284
    23. 23)
      • Pignié, J., Clar, P., Ferreira, E., Bouaziz, L., Caillaud, J.: `Navigation, guidance and control of the atmospheric re-entry demonstrator', Proc. Third ESA Int. Conf. Spacecraft Guidance, Navigation and Control Systems, 1996, Noordwijk, The Netherlands, ESA, p. 149.
    24. 24)
      • N.X. Vinh , A. Busemann , R.D. Culp . (1980) Hypersonic and planetary entry flight mechanics.
    25. 25)
      • J.T. Betts . (2001) Practical methods for optimal control using nonlinear programming.
    26. 26)
      • United States Committee on Extension to the Standard Atmosphere: ‘U.S. standard atmosphere’, National Oceanic and Atmospheric Administration, National Aeronautics and Space Administration, United States Air Force, Washington, D.C., 1976.
    27. 27)
      • Harpold, J.C., Graves, C.A.J.: `Re-entry targeting philosophy and flight results from apollo 10 and 11', Proc. AIAA Eigth Aerospace Sciences Meeting, 1970, New York, USA, N70‐28AIAA, .
    28. 28)
      • P. Rouchon . Necessary condition and genericity of dynamic feedback linearization. J. Math. Syst. Estim. Control , 5 , 345 - 358
    29. 29)
      • Zerar, M., Cazaurang, F., Zolghadri, A.: `Robust tracking of nonlinear mimo uncertain at systems', Proc. IEEE Int. Conf. Systems Man and Cybernetics, 2004, The Hague, The Netherlands, ESA, p. 536–541.
    30. 30)
      • Steinbuch, M., Terlouw, J.C., Bosgra, O.H.: `Robustness analysis for real and complex perturbations applied to an electro-mechanical system', Proc. 1991 American Control Conf., 1991, Boston, USA, IEEE, p. 556–561.
    31. 31)
      • P. Gahinet , A. Nemirovskii , A.J. Laub , M. Chilali . (1995) The LMI control toolbox for use with matlab.
    32. 32)
      • F. Zheng , Q.-G. Wang , T. Lee . On the design of multivariable pid controllers via lmi approach. Automatica , 38 , 517 - 526
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2008.0057
Loading

Related content

content/journals/10.1049/iet-cta.2008.0057
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address