http://iet.metastore.ingenta.com
1887

Stabilisation and altitude tracking of a four-rotor microhelicopter using the lifting operators

Stabilisation and altitude tracking of a four-rotor microhelicopter using the lifting operators

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Control Theory & Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The lifting methodology can be used for simplifying the closed-loop stability study of a system in which the measurement data are acquired at different frequencies. This is because the lifting operators allow treating this kind of systems as if there is only one control frequency, which reduces the complexity of the problem in a very important way. The four-rotor microhelicopter designed by the authors, whose control is faced, is a nonlinear plant with sensors operating at two different frequencies. First, the system is linearised cancelling the rotors dynamics. Then, the authors implement a model reference adaptive control structure for identifying the gains of the linear reference plant and performing the adaptive control of the microhelicopter. At this point, the system stability study is carried out by just computing the eigenvalues of the closed-loop states matrix thanks to the lifting operators.

References

    1. 1)
      • W. Barnes , W. McCormick . (1994) Aerodynamics aeronautics and flight mechanics.
    2. 2)
      • Pounds, P., Mahony, R., Hynes, P., Roberts, J.: `Design of a four-rotor aerial robot', Proc. Australasian Conf. on Robotics and Automation, 2002, Auckland, New Zealand, p. 145–150.
    3. 3)
      • Chen, M., Huzmezan, M.: `A simulation model and H', Proc. IASTED Int. Conf. on Modelling, Simulation and Optimization, 2003, p. 320–325.
    4. 4)
      • Chen, M., Huzmezan, M.: `A combined MBPC/ 2 DOF H', Proc. AIAA Guidance, Navigation and Control Conf. and Exhibit, 2003, TX, USA.
    5. 5)
      • Lim, K.B., Shin, J.Y., Moerder, D.D., Cooper, E.G.: `A new approach to attitude stability and control for low airspeed vehicles', Report Number: AIAA Paper 2004-5008, NASA Technical Report, Document ID: 20040095917, 2004.
    6. 6)
      • Bouabdallah, S., Becker, M., Perrot, V., Siegwart, R.: `Implementation of an obstacle avoidance controller on the OS4 mini-helicopter', Proc. XII Diname Int. Symp. on Dynamic Problems of Mechanics, 2007, Illha Bela, Brazil.
    7. 7)
      • Bouabdallah, S., Caprari, G., Siegwart, R.: `Design and control of an indoor coaxial helicopter', Proc. IEEE Int. Conf. on Intelligent Robots and Systems, 2006, Beijing, China, p. 2930–2935.
    8. 8)
      • Bouabdallah, S., Siegwart, R.: `Towards intelligent miniature flying robots', Proc. Field and Service Robotics, 2005, Port Douglas, Australia.
    9. 9)
      • Bouabdallah, S., Siegwart, R.: `Backstepping and sliding-mode techniques applied to an indoor micro quadrotor', Proc. IEEE Int. Conf. on Robotics and Automation, 2005, Barcelona, Spain, p. 2247–2252.
    10. 10)
      • Bouabdallah, S., Noth, A., Siegwart, R.: `PID versus LQ control techniques applied to an indoor micro quadrotor', Proc. IEEE Int. Conf. on Intelligent Robots and Systems, September–October 2004, Sendai, Japan.
    11. 11)
      • Bouabdallah, S., Murrieri, P., Siegwart, R.: `Design and control of an indoor micro quadrotor', Proc. IEEE Int. Conf. on Robotics and Automation, 2004, New Orleans, LA, USA, p. 4393–4398.
    12. 12)
      • P. Castillo , R. Lozano , A. Azul . Stabilization of a mini rotorcraft with four rotors. IEEE Control Syst. Mag. , 45 - 55
    13. 13)
      • P. Castillo , A. Dzul , R. Lozano . Real-time stabilization and tracking of a four-rotor mini rotorcraft. IEEE Trans. Control Syst. Technol. , 4 , 510 - 516
    14. 14)
      • Castillo, P., Albertos, P., García, P., Lozano, R.: `Simple real-time attitude stabilization of a quad-rotor aircraft with bounded signals', Proc. 45th IEEE Conf. on Decision and Control, 2006, San Diego, CA, USA, p. 1533–1538.
    15. 15)
      • García, P., Castillo, P., Lozano, R., Albertos, P.: `Robustness with respect to delay uncertainties of a predictor-observer based discrete-time controller', Proc. 45th IEEE Conf. on Decision and Control, 2006, San Diego, CA, USA, p. 199–204.
    16. 16)
      • Madani, T., Benallegue, A.: `Sliding mode observer and backstepping control for a quadrotor unmanned aerial vehicles', Proc. American Control Conf., 2007, New York, NY, USA, p. 5887–5892.
    17. 17)
      • Madani, T., Benallegue, A.: `Backstepping sliding mode control applied to a miniature quadrotor flying robot', Proc. 32nd Annual Conf. on IEEE Industrial Electronics, IECON, 2006, p. 700–705.
    18. 18)
      • Madani, T., Benallegue, A.: `Backstepping control with exact 2-sliding mode estimation for a quadrotor unmanned aerial vehicle', Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, IROS 2007, 2007, San Diego, CA, USA, p. 141–146.
    19. 19)
      • Madani, T., Benallegue, A.: `Control of a quadrotor mini-helicopter via full state backstepping technique', Proc. 45th IEEE Conf. on Decision and Control, 2006, San Diego, CA, USA, p. 1515–1520.
    20. 20)
      • Madani, T., Benallegue, A.: `Backstepping control for a quadrotor helicopter', Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, IROS 2006, 2006, Beijing, China, p. 3265–3260.
    21. 21)
      • Mokhtari, A., Benallegue, A., Daachi, B.: `Robust feedback linearization and GH/sub /spl infin// controller for a quadrotor unmanned aerial vehicle', Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, IROS 2005, 2005, Alberta, Canada, p. 1198–1203.
    22. 22)
      • Benallegue, A., Mokhtari, A., Fridman, L.: `Feedback linearization and high order sliding mode observer for a quadrotor UAV', Proc. 2006 Int. Workshop on Variable Structure Systems, 2006, Alghero, Italy, p. 365–372.
    23. 23)
      • Mokhtari, A., Benallegue, A.: `Dynamic feedback controller of Euler angles and wind parameters estimation for a quadrotor unmanned aerial vehicle', Proc. IEEE Int. Conf. on Robotics and Automation, 2004, New Orleans, LA, USA, p. 2359–2366.
    24. 24)
      • Efe, M.O.: `Robust low altitude behavior control of a quadrotor rotorcraft through sliding modes', Proc. Mediterranean Conf. on Control & Automation, 2007, Athens, Greece, p. 1–6.
    25. 25)
      • Besnard, L., Shtessel, Y.B., Landrum, B.: `Control of a quadrotor vehicle using sliding mode disturbance observer', Proc. American Control Conf., 2007, New York, NY, USA, p. 5230–5235.
    26. 26)
      • Rong, X., Ozguner, U.: `Sliding mode control of a quadrotor helicopter', Proc. 45th IEEE Conf. on Decision and Control, 2006, San Diego, CA, USA, p. 4957–4962.
    27. 27)
      • Coza, C., Macnab, C.J.B.: `A new robust adaptive-fuzzy control method applied to quadrotor helicopter stabilization', Proc. Annual meeting of the North American Fuzzy Information Processing Society, 2006, Montreal, Canada, p. 454–458.
    28. 28)
      • Voos, H.: `Nonlinear state-dependent Riccati equation control of a quadrotor UAV', Proc. IEEE Int. Conf. on Control Applications, 2006, Munich, Germany, p. 2547–2552.
    29. 29)
      • Voos, H.: `Nonlinear and neural network-based control of a small four-rotor aerial robot', Proc. IEEE/ASME Int. Conf. on Advanced Intelligent Mechatronics, 2007, ETH Zürich, Switzerland, p. 1–6.
    30. 30)
      • Altug, E., Ostrowski, J.P., Taylor, C.J.: `Quadrotor control using dual camera visual feedback', Proc. IEEE Int. Conf. on Robotics and Automation, 2003, Taipei, Taiwan, p. 4294–4299.
    31. 31)
      • T. Chen , B.A. Francis . Input-output stability of sampled-data systems. IEEE Trans. Autom. Control , 1 , 50 - 58
    32. 32)
      • D. Li , S.L. Shah , T. Chen . Analysis of dual-rate inferential control systems. Automatica , 6 , 1053 - 1059
    33. 33)
      • T. Chen , B. Francis . (1995) Optimal sampled-data control systems.
    34. 34)
      • Chen, T.: `A lifting approach to analysis and design of nonuniform multirate filter banks', Proc IEEE Canadian Conf. on Electrical and Computer Engineering, 1995, Montreal, Canada, p. 874–877.
    35. 35)
      • J. Wang , T. Chen , B. Huang . Multirate sampled-data systems: computing fast-rate models. J. Process Control , 1 , 79 - 88
    36. 36)
      • T. Chen . Nonuniform multirate filter banks: analysis and design with an H∞ performance measure. IEEE Trans. Signal Process. , 3 , 572 - 582
    37. 37)
      • Tangirala, A.K., Shah, S.L., Chen, T.: `Conditions for removing intersample ripples in multirate control', Proc. IEEE Canadian Conf. on Electrical and Computer Engineering, 1999, Alberta, Canada, p. 1585–1589.
    38. 38)
      • D.G. Meyer . Cost translation and a lifting approach to the multirate LQG problem. IEEE Trans. Autom. Control , 9 , 1411 - 1415
    39. 39)
      • Sagfors, M.F., Toivonen, H.T., Lennartson, B.: `State-splace solution to the multirate H-infinity control problem: a lifting approach', Proc. 36th IEEE Conf. on Decision and Control, 1997, San Diego, CA, USA, p. 2061–2066.
    40. 40)
      • M. Sigut , L. Acosta , G.N. Marichal . Determining the stability of a multifrequency large-scale system using lifting operators. IEE Proc. Control Theory Appl. , 4 , 453 - 459
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2008.0028
Loading

Related content

content/journals/10.1049/iet-cta.2008.0028
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address