http://iet.metastore.ingenta.com
1887

Optimal pole assignment for discrete-time systems via Stein equations

Optimal pole assignment for discrete-time systems via Stein equations

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Control Theory & Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study is concerned with designing a feedback gain to minimise a quadratic performance index with guaranteed pole locations for closed-loop discrete-time linear systems. Firstly, a method that shifts the open-loop poles to desired locations by using a parametric linear Stein equation is presented. Then a recursive approach is proposed to shift every eigenvalue of a discrete-time linear system separately without mode decomposition in each step. By using such method, it is required to solve a linear Stein matrix equation of low order in each step. The presented method yields a solution which is optimal with respect to a quadratic performance index that can be obtained explicitly. The attractive feature of this method comparing with existing results is that it enables solutions to complex problems to be easily found without solving any non-linear algebraic Riccati equations. Moreover, analytical solutions can be obtained which may have advantages in some design problems. Numerical examples illustrate the proposed approach.

References

    1. 1)
      • D.P. Iracleous , A.T. Alexandridis . A simple solution to the optimal eigenvalue assignment problem. IEEE Trans. Autom. Control , 9 , 1746 - 1749
    2. 2)
      • K. Sugimoto . Partial pole assignment by LQ regulators: an inverse problem approach. IEEE Trans. Autom. Control , 5 , 706 - 708
    3. 3)
      • M.H. Amin . Optimal pole shifting for continuous multivariable linear systems. Int. J. Control , 3 , 701 - 707
    4. 4)
      • M. Saif . Optimal linear regulator pole-placement by weight selection. Int. J. Control , 1 , 399 - 414
    5. 5)
      • M.G. Safonov , M. Athans . Gain and phase margin for multiloop LQG regulators. IEEE Trans. Autom. Control , 173 - 178
    6. 6)
      • S.-H. Lee , T.-H. Lee . Optimal pole assignment for a discrete linear regulator with constant disturbances. Int. J. Control , 1 , 161 - 168
    7. 7)
      • O.A. Solheim . Design of optimal control systems with prescribed eigenvalues. Int. J. Control , 1 , 143 - 160
    8. 8)
      • W.L. Eastman , J.A. Bossi . Design of linear quadratic regulation with assigned eigenstructure. Int. J. Control , 4 , 731 - 742
    9. 9)
      • T. Hagiwara , M. Araki . A successive optimal construction procedure for state feedback gains. Linear Algebra Appl. , 659 - 673
    10. 10)
      • O.A. Sebakhy , N.N. Sorial . Optimization of linear multivariable systems with pre-specified closed-loop eigenvalues. IEEE Trans. Autom. Control , 2 , 355 - 357
    11. 11)
      • J. Medanic , H.S. Tharp , W.R. Perkins . Pole placement by performance criterion modification. IEEE Trans. Autom. Control , 5 , 469 - 472
    12. 12)
      • H.S. Tharp . Optimal pole-assignment in discrete systems. IEEE Trans. Autom. Control , 5 , 645 - 648
    13. 13)
      • J.-L. Wu , T.-T. Lee . Optimal static output feedback simultaneous regional pole placement. IEEE Trans. Syst. Man Cybern. B: Cybern. , 5 , 881 - 893
    14. 14)
      • W.M. Haddad , D.S. Bernstein . Controller design with regional pole constrains. IEEE Trans. Autom. Control , 1 , 54 - 69
    15. 15)
      • N. Kawasaki , E. Shimenura . Determining quadratic weighting matrices to locate poles in a specified region. Automatica , 5 , 557 - 560
    16. 16)
      • O.I. Kosmidou . Robust control with pole shifting via performance index modification. Appl. Math. Comput. , 596 - 606
    17. 17)
      • W. Luo , K. Ling . Inverse optimal adaptive control for attitude tracking of “Spacecraft” . IEEE Trans. Autom. Control , 11 , 1639 - 1654
    18. 18)
      • F. Amini , H. Karagah . Optimal placement of semi active dampers by pole assignment method. Iran. J. Sci. Technol. Trans. B – Eng. , 31 - 41
    19. 19)
      • X. Cai , Z. Han . Inverse optimal control of nonlinear systems with structural uncertainty. IEE Proc. – Control Theory Appl. , 1 , 79 - 83
    20. 20)
      • D. Iracleous , A.T. Alexandridis . A multi-task automatic generation control for power regulation. Elect. Power Syst. Res. , 3 , 275 - 285
    21. 21)
      • N.S. Rousant , M.E. Sawan . Optimal pole shifting for discrete multivariable systems. Int. J. Syst. Sci. , 5 , 799 - 806
    22. 22)
      • M.K. El-Sherbiny , M.M. Hasan , G. El-Saady , A.M. Yousef . Optimal pole shifting for power system stabilization. Elect. Power Syst. Res. , 253 - 258
    23. 23)
      • R.E. Kalman . When is a linear control system optimal?. Trans. ASME , 51 - 60
    24. 24)
      • B.P. Molinari . The state regulator problem and its inverse. IEEE Trans. Automat. Control , 10 , 454 - 459
    25. 25)
      • A.T. Alexandridis , G.D. Galanos . Optimal pole-placement for linear multi-input controllable systems. IEEE Trans. Circuits Syst. , 12 , 1602 - 1604
    26. 26)
      • A.T. Alexandridis . Optimal entire eigenstructure assignment of discrete-time linear systems. IEE Proc. – Control Theory Appl. , 5 , 301 - 304
    27. 27)
      • C.D. Meyer . (2000) Matrix analysis and applied linear algebra.
    28. 28)
      • B. Zhou , Z. Lin , G. Duan . A parametric Lyapunov equation approach to low gain feedback design for discrete-time systems. Automatica , 1 , 238 - 244
    29. 29)
      • D.L. Kleinman . Stabilizing a discrete, constant, linear systems with application to iterative methods for solving the Riccati equation. IEEE Trans. Autom. Control , 252 - 254
    30. 30)
      • Y. Mori , E. Shimemura . On a shift of eigenvalues of a matrix by using a solution of an algebraic Riccati equation. Int. J. Control , 1 , 73 - 80
    31. 31)
      • B.P. Molinari . The time-invariant linear-quadratic optimal control problem. Automatica , 347 - 357
    32. 32)
      • S.J. Hammarling . Numerical solution of the stable, nonnegative definite Lyapunov equation. IMA J. Numer. Anal. , 303 - 323
    33. 33)
      • T. Fujinaka , T. Katayama . Discrete-time optimal regulator with closed-loop poles in a prescribed region. Int. J. Control , 5 , 1307 - 1321
    34. 34)
      • K. Zhou , J.C. Doyle , K. Glover . (1996) Robust and optimal control.
    35. 35)
      • P.V. Kokotovic . A Riccati equation for block-diagonalization of ill-conditioned systems. IEEE Trans. Autom. Control , 812 - 814
    36. 36)
      • M.T. El-Hadidi , M.H. Tawfik . A new iterative algorithm for block-diagonalization of discrete-time systems. Syst. Control Lett. , 6 , 359 - 365
    37. 37)
      • L.S. Shieh , Y.T. Tsay , S.W. Lin , N.P. Coleman . Block-diagonalization and block-triangularization of a matrix via the matrix sign function. Int. J. Syst. Sci. , 11 , 1203 - 1220
    38. 38)
      • J.J. Koliha . Block diagonalization. Math. Bohem. , 1 , 237 - 246
    39. 39)
      • M.H. Amin . Optimal discrete systems with prescribed eigenvalues. Int. J. Control , 4 , 783 - 794
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2007.0371
Loading

Related content

content/journals/10.1049/iet-cta.2007.0371
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address