Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon openaccess Shape retrieval by using multi-scale angle-based representation and dynamic label propagation

To improve the robustness and discrimination power of the triangle-area representation, a novel shape matching method based on multi-scale angle representation is proposed in this study. By analysing the configurations of different sample points from each shape contour, shape descriptors are constructed by using space angles at different scale levels. With the proposed shape representation, the multi-scale information of shape contours is efficiently described, and the dynamic programming is further used to determine the correspondence between samples from different shapes and calculate the shape distance in the feature matching step. Moreover, to improve the shape retrieval results based on pairwise shape distances, the dynamic label propagation is introduced as the post-processing step. Unlike previous distance learning methods learning the database manifold implicitly, the authors method retrieves relative objects on the shortest paths from near to far explicitly, and the underlying structure can be effectively captured. The proposed method tested on different shape databases provides the performances superior to many other methods, and it can be applied to visual data processing and understanding of the internet of things.

References

    1. 1)
      • 39. Xiang, B., Cong, R., Xinggang, W.: ‘Shape vocabulary: a robust and efficient shape representation for shape matching’, IEEE Trans. Image Process., 2014, 23, (9), pp. 39353949.
    2. 2)
      • 44. Söderkvist, O.J.O.: ‘Computer vision classification of leaves from Swedish trees’, Linköping University, 2001.
    3. 3)
      • 26. Yang, X., Prasad, L., Latecki, L.J.: ‘Affinity learning with diffusion on tensor product graph’, IEEE Trans. Pattern Anal. Mach. Intell., 2013, 35, (1), pp. 2838.
    4. 4)
      • 21. Zheng, D., Han, M.: ‘Shape retrieval and recognition based on fuzzy histogram’, J. Vis. Commun. Image Represent., 2013, 24, (7), pp. 10091019.
    5. 5)
      • 18. Belongie, S., Malik, J., Puzicha, J.: ‘Shape matching and object recognition using shape contexts’, IEEE Trans. Pattern Anal. Mach. Intell., 2002, 24, (4), pp. 509522.
    6. 6)
      • 13. Su, Y., Liu, Y., Cuan, B., et al: ‘Contour guided hierarchical model for shape matching’. IEEE Int. Conf. on Computer Vision (ICCV 2015), Santiago, Chile, 2015, pp. 16091617.
    7. 7)
      • 28. Zhou, Y., Bai, X., Liu, W., et al: ‘Similarity fusion for visual tracking’, Int. J. Comput. Vis., 2016, 118, (3), pp. 337363.
    8. 8)
      • 6. Zhu, N., Craddock, I., Diethe, T., et al: ‘Bridging e-health and the internet of things: the sphere project’, IEEE Intell. Syst., 2015, 30, (4), pp. 3946.
    9. 9)
      • 4. Bicego, M., Lovato, P.: ‘A bioinformatics approach to 2D shape classification’, Comput. Vis. Image Underst., 2015, 145, (C), pp. 5969.
    10. 10)
      • 14. Wang, C., Pelillo, M., Siddiqi, K.: ‘Dominant set clustering and pooling for multi-view 3D object recognition’. British Machine Vision Conf. (BMVC 2017), London, UK, 2017, pp. 47.
    11. 11)
      • 2. Wang, F., Kang, L., Li, Y.: ‘Sketch-based 3D shape retrieval using convolutional neural networks’. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR 2015), Boston, MA, USA, 2015, pp. 18751883.
    12. 12)
      • 5. Wood, E., Baltruaitis, T., Zhang, X., et al: ‘Rendering of eyes for eye-shape registration and gaze estimation’. IEEE Int. Conf. on Computer Vision (ICCV 2015), Santiago, Chile, 2015, pp. 37563764.
    13. 13)
      • 12. Hu, R.X., Jia, W., Ling, H., et al: ‘Angular pattern and binary angular pattern for shape retrieval’, IEEE Trans. Image Process., 2013, 23, (3), pp. 11181127.
    14. 14)
      • 34. Xiang, B., Latecki, L.J.: ‘Path similarity skeleton graph matching’, IEEE Trans. Pattern Anal. Mach. Intell., 2008, 30, (7), pp. 12821292.
    15. 15)
      • 38. Wang, J., Bai, X., You, X., et al: ‘Shape matching and classification using height functions’, Pattern Recognit. Lett., 2012, 33, (2), pp. 134143.
    16. 16)
      • 8. Kim, K.I., Tompkin, J., Pfister, H., et al: ‘Context-guided diffusion for label propagation on graphs’. IEEE Int. Conf. on Computer Vision (ICCV 2015), Santiago, Chile, 2015, pp. 27762784.
    17. 17)
      • 43. Bai, X., Wang, B., Yao, C., et al: ‘Co-transduction for shape retrieval’, IEEE Trans. Image Process., 2012, 21, (5), pp. 27472757.
    18. 18)
      • 36. Latecki, L.J., Lakamper, R., Eckhardt, T.: ‘Shape descriptors for non-rigid shapes with a single closed contour’. IEEE Conf. on Computer Vision and Pattern Recognition, 2000, pp. 424429.
    19. 19)
      • 25. Premachandran, V., Kakarala, R.: ‘Perceptually motivated shape context which uses shape interiors’, Pattern Recognit., 2013, 46, (8), pp. 20922102.
    20. 20)
      • 27. Bai, S., Bai, X.: ‘Sparse contextual activation for efficient visual re-ranking’, IEEE Trans. Image Process., 2016, 25, (3), pp. 10561069.
    21. 21)
      • 15. Zhou, W., Zhong, B., Ma, K.K.: ‘Shape matching based on rectangularized curvature scale-space maps’. IEEE Int. Conf. on Image Processing, 2019, pp. 42304234.
    22. 22)
      • 31. Wang, J., Li, Y., Bai, X., et al: ‘Learning context-sensitive similarity by shortest path propagation’, Pattern Recognit., 2011, 44, (10, 11), pp. 23672374.
    23. 23)
      • 17. Alajlan, N., Kamel, M.S., Freeman, G.H.: ‘Geometry-based image retrieval in binary image databases’, IEEE Trans. Pattern Anal. Mach. Intell., 2008, 30, (6), pp. 10031013.
    24. 24)
      • 42. Aslan, C., Erdem, A., Erdem, E., et al: ‘Disconnected skeleton: shape at its absolute scale’, IEEE Trans. Pattern Anal. Mach. Intell., 2008, 30, (12), pp. 21882203.
    25. 25)
      • 19. Mori, G., Belongie, S., Malik, J.: ‘Efficient shape matching using shape contexts’, IEEE Trans. Pattern Anal. Mach. Intell., 2005, 27, (11), pp. 18321837.
    26. 26)
      • 45. Mallah, C., Cope, J., Orwell, J.: ‘Plant leaf classification using probabilistic integration of shape, texture and margin features’. Signal Processing, Pattern Recognition and Applications (SPPRA 2013), Innsbruck, Austria, 2013, vol. 798, pp. 279286.
    27. 27)
      • 23. Ling, H., Jacobs, D.W.: ‘Shape classification using the inner-distance’, IEEE Trans. Pattern Anal. Mach. Intell., 2007, 29, (2), pp. 286299.
    28. 28)
      • 24. Ling, H., Yang, X., Latecki, L.: ‘Balancing deformability and discriminability for shape matching’. European Conf. on Computer Vision (ECCV 2010), Crete, Greece, 2010, vol. 6313, pp. 411424.
    29. 29)
      • 3. Gasparetto, A., Torsello, A.: ‘A statistical model of Riemannian metric variation for deformable shape analysis’. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR 2015), Boston, MA, USA, 2015, pp. 12191228.
    30. 30)
      • 40. Kontschieder, P., Donoser, M., Bischof, H.: ‘Beyond pairwise shape similarity analysis’. Asian Conf. on Computer Vision (ACCV 2009), Xi'an, China, 2009, vol. 5996, pp. 655666.
    31. 31)
      • 29. Yang, X., Bai, X., Latecki, L.J.: ‘Improving shape retrieval by learning graph transduction’. European Conf. on Computer Vision (ECCV 2008), Marseille, France, 2008, vol. 5305, pp. 788801.
    32. 32)
      • 35. Felzenszwalb, P.F., Schwartz, J.D.: ‘Hierarchical matching of deformable shapes’. IEEE Conf. on Computer Vision and Pattern Recognition, 2007 (CVPR'07), Minneapolis, MN, USA, 2007, pp. 18.
    33. 33)
      • 7. Bai, X., Bai, S., Wang, X.: ‘Beyond diffusion process: neighbor set similarity for fast re-ranking’, Inf. Sci., 2015, 325, pp. 342354.
    34. 34)
      • 41. Yang, X., Koknar Tezel, S., Latecki, L.J.: ‘Locally constrained diffusion process on locally densified distance spaces with applications to shape retrieval’. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR 2009), Miami Beach, FL, USA, 2009, pp. 357364.
    35. 35)
      • 22. Daliri, M.R., Torre, V.: ‘Robust symbolic representation for shape recognition and retrieval’, Pattern Recognit., 2008, 41, (5), pp. 17821798.
    36. 36)
      • 9. Bai, S., Sun, S., Bai, X., et al: ‘Smooth neighborhood structure mining on multiple affinity graphs with applications to context-sensitive similarity’. European Conf. on Computer Vision (ECCV 2016), Amsterdam, the Netherlands, 2016, pp. 592608.
    37. 37)
      • 1. Yang, C., Tiebe, O., Shirahama, K., et al: ‘Object matching with hierarchical skeletons’, Pattern Recognit., 2016, 55, (C), pp. 183197.
    38. 38)
      • 32. Jiang, J., Wang, B., Tu, Z.: ‘Unsupervised metric learning by self-smoothing operator’. IEEE Int. Conf. on Computer Vision (ICCV 2011), Barcelona, Spain, 2011, pp. 794801.
    39. 39)
      • 20. Roman Rangel, E., Pallan, C., Odobez, J.M., et al: ‘Analyzing ancient Maya glyph collections with contextual shape descriptors’, Int. J. Comput. Vis., 2010, 90, (1), pp. 117.
    40. 40)
      • 33. Sebastian, T.B., Klein, P.N., Kimia, B.B.: ‘Recognition of shapes by editing their shock graphs’, IEEE Trans. Pattern Anal. Mach. Intell., 2004, 26, (5), pp. 550571.
    41. 41)
      • 30. Bai, X., Yang, X., Latecki, L.J., et al: ‘Learning context-sensitive shape similarity by graph transduction’, IEEE Trans. Pattern Anal. Mach. Intell., 2010, 32, (5), pp. 861874.
    42. 42)
      • 16. Alajlan, N., El Rube, I., Kamel, M.S., et al: ‘Shape retrieval using triangle-area representation and dynamic space warping’, Pattern Recognit., 2007, 40, (7), pp. 19111920.
    43. 43)
      • 11. Zhang, D., Lu, G.: ‘Review of shape representation and description techniques’, Pattern Recognit., 2004, 37, (1), pp. 119.
    44. 44)
      • 37. McNeill, G., Vijayakumar, S.: ‘Hierarchical procrustes matching for shape retrieval’. 2006 IEEE Computer Society Conf. on Computer Vision and Pattern Recognition, 2006, vol. 1, pp. 885894.
    45. 45)
      • 10. Loncaric, S.: ‘A survey of shape analysis techniques’, Pattern Recognit., 1998, 31, (8), pp. 9831001.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-csr.2020.0044
Loading

Related content

content/journals/10.1049/iet-csr.2020.0044
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address