Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon openaccess Observer canonical form based robust fault detection and estimation for hyperbolic spatiotemporal dynamic systems

In this study, the authors propose a novel state and a fault estimation scheme for a class of hyperbolic spatiotemporal dynamic systems in the presence of unknown external disturbance. They consider the occurrence of multiplicative actuator and sensor faults. In detail, they consider two cases of fault occurrence: (i) only one type (actuator or sensor) of fault happens; (ii) two types of faults occur simultaneously. This study discusses the fault detectability conditions by proposing a fault detection observer. To complete the estimation problem, three difficulties arise: (i) no prior information shows the type of faults; (ii) the observer design is non-linear due to multiplication between plant signals (state or input) and unknown fault parameters; (iii) only one boundary measurement is available. They convert the original faulty plant into its observer canonical form. By proposing two filters based on the resulting observer canonical form, they develop novel parameter update laws for fault parameter estimation. With the proposed update laws, the true state of the faulty plant can be estimated by the proposed observers. By selecting appropriate Lyapunov functions, they prove that estimation error of state and fault parameters exponentially decays to an arbitrarily small neighbourhood of zero despite unknown external disturbance.

References

    1. 1)
      • 13. Gao, Z., Breikin, T., Wang, H.: ‘High-gain estimator and fault-tolerant design with application to a gas turbine dynamic system’, IEEE Trans. Control Syst. Technol., 2007, 15, (4), pp. 740753.
    2. 2)
      • 3. Du, Y., Budman, H., Duever, T.A., et al: ‘Fault detection and classification for nonlinear chemical processes using lasso and Gaussian process’, Ind. Eng. Chem. Res., 2018, 57, (27), pp. 89628977.
    3. 3)
      • 21. Liu, X., Gao, Z., Zhang, A.: ‘Observer-based fault estimation and tolerant control for stochastic Takagi–Sugeno fuzzy systems with Brownian parameter perturbations’, Automatica, 2019, 102, pp. 137149.
    4. 4)
      • 7. Ding, S.X.: ‘Model-based fault diagnosis techniques: design schemes, algorithms, and tools’ (Springer Science & Business Media, New york, 2008).
    5. 5)
      • 32. Krstic, M.: ‘Delay compensation for nonlinear, adaptive, and PDE systems’ (Birkhäuser boston inc. Secaucus, United States, 2010).
    6. 6)
      • 12. Yang, H., Jiang, B., Staroswiecki, M.: ‘Observer-based fault-tolerant control for a class of switched nonlinear systems’, IET Control Theory Appl., 2007, 1, (5), pp. 15231532.
    7. 7)
      • 24. Armaou, A., Demetriou, M.A.: ‘Robust detection and accommodation of incipient component and actuator faults in nonlinear distributed processes’, AIChE J., 2008, 54, (10), pp. 26512662.
    8. 8)
      • 16. Li, X., Ahn, C.K., Lu, D., et al: ‘Robust simultaneous fault estimation and nonfragile output feedback fault-tolerant control for Markovian jump systems’, IEEE Trans. Syst. Man Cybernet., Syst., 2019, 49, (9), pp. 17691776.
    9. 9)
      • 22. Xu, X., Dubljevic, S.: ‘The state feedback servo-regulator for countercurrent heat exchanger system modelled by system of hyperbolic PDEs’, Eur. J. Control, 2016, 29, pp. 5161.
    10. 10)
      • 18. Chinnam, R.B., Baruah, P.: ‘Autonomous diagnostics and prognostics through competitive learning driven hmm-based clustering’. Proc. of the Int. Joint Conf. on Neural Networks, Portland, OR, USA, 2003, vol. 4, pp. 24662471.
    11. 11)
      • 2. Yang, X., Yang, X.: ‘Local identification of lpv dual-rate system with random measurement delays’, IEEE Trans. Ind. Electron., 2017, 65, (2), pp. 14991507.
    12. 12)
      • 10. Liu, M., Shi, P.: ‘Sensor fault estimation and tolerant control for Itô stochastic systems with a descriptor sliding mode approach’, Automatica, 2013, 49, (5), pp. 12421250.
    13. 13)
      • 1. Yang, X., Yin, S., Kaynak, O.: ‘Robust identification of lpv time-delay system with randomly missing measurements’, IEEE Trans. Syst. Man Cybernet., Syst., 2018, 48, (12), pp. 21982208.
    14. 14)
      • 4. Du, Y., Du, D.: ‘Fault detection and diagnosis using empirical mode decomposition based principal component analysis’, Comput. Chem. Eng., 2018, 115, pp. 121.
    15. 15)
      • 6. Chen, J., Patton, R.J.: ‘Robust model-based fault diagnosis for dynamic systems’, vol. 3, (Springer Science & Business Media, New york, 2012).
    16. 16)
    17. 17)
    18. 18)
    19. 19)
      • 8. Wang, Y.W., Xiao, J.W., Wang, H.O.: ‘Global synchronization of complex dynamical networks with network failures’, Int. J. Robust Nonlinear Control, 2010, 20, (15), pp. 16671677.
    20. 20)
      • 20. Gao, Z.: ‘Fault estimation and fault-tolerant control for discrete-time dynamic systems’, IEEE Trans. Ind. Electron., 2015, 62, (6), pp. 38743884.
    21. 21)
      • 5. Yin, S., Gao, H., Qiu, J., et al: ‘Descriptor reduced-order sliding mode observers design for switched systems with sensor and actuator faults’, Automatica, 2017, 76, pp. 282292.
    22. 22)
      • 31. Xu, X., Dubljevic, S.: ‘Output regulation for a class of linear boundary controlled first-order hyperbolic PIDE systems’, Automatica, 2017, 85, pp. 4352.
    23. 23)
      • 19. Gao, Z., Liu, X., Chen, M.Z.: ‘Unknown input observer-based robust fault estimation for systems corrupted by partially decoupled disturbances’, IEEE Trans. Ind. Electron., 2015, 63, (4), pp. 25372547.
    24. 24)
      • 27. Deutscher, J.: ‘Fault detection for linear distributed-parameter systems using finite-dimensional functional observers’, Int. J. Control, 2016, 89, (3), pp. 550563.
    25. 25)
      • 30. Bribiesca-Argomedo, F., Krstic, M.: ‘Backstepping-forwarding control and observation for hyperbolic pdes with Fredholm integrals’, IEEE Trans. Autom. Control, 2015, 60, (8), pp. 21452160.
    26. 26)
    27. 27)
      • 25. Ghantasala, S., El-Farra, N.H.: ‘Robust actuator fault isolation and management in constrained uncertain parabolic pde systems’, Automatica, 2009, 45, (10), pp. 23682373.
    28. 28)
      • 17. Wang, P., Vachtsevanos, G.: ‘Fault prognostics using dynamic wavelet neural networks’, AI EDAM, 2001, 15, (4), pp. 349365.
    29. 29)
      • 29. Zhu, J.W., Yang, G.H., Wang, H., et al: ‘Fault estimation for a class of nonlinear systems based on intermediate estimator’, IEEE Trans. Autom. Control, 2016, 61, (9), pp. 25182524.
    30. 30)
      • 11. Cristofaro, A., Johansen, T.A.: ‘Fault tolerant control allocation using unknown input observers’, Automatica, 2014, 50, (7), pp. 18911897.
    31. 31)
      • 26. Demetriou, M.A., Ito, K., Smith, R.C.: ‘Adaptive monitoring and accommodation of nonlinear actuator faults in positive real infinite dimensional systems’, IEEE Trans. Autom. Control, 2007, 52, (12), pp. 23322338.
    32. 32)
      • 9. Jiang, B., Staroswiecki, M., Cocquempot, V.: ‘Fault accommodation for nonlinear dynamic systems’, IEEE Trans. Autom. Control, 2006, 51, (9), pp. 15781583.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-csr.2020.0019
Loading

Related content

content/journals/10.1049/iet-csr.2020.0019
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address