Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon openaccess Aerodynamic mechanisms in bio-inspired micro air vehicles: a review in the light of novel compound layouts

Modern designs of micro air vehicles (MAVs) are mostly inspired by nature's flyers, such as hummingbirds and flying insects, which results in the birth of bio-inspired MAVs. The history and recent progress of the aerodynamic mechanisms in bio-inspired MAVs are reviewed in this study, especially focused on those compound layouts using bio-inspired unsteady aerodynamic mechanisms. Several successful bio-mimicking MAVs and the unsteady high lift mechanisms in insect flight are briefly revisited. Four types of the compound layouts, i.e. the fixed/flapping-wing MAV, the flapping rotary wing MAV, the multiple-pair flapping-wing MAV, and the cycloidal rotor MAV are introduced in terms of recent findings on their aerodynamic mechanisms. In the end, future interests in the field of MAVs are suggested. The authors' review can provide solid background knowledge for both future studies on the aerodynamic mechanisms in bio-inspired MAVs and the practical design of a bio-inspired MAV.

References

    1. 1)
      • 86. Wu, J.H., Qiu, J., Zhang, Y.L.: ‘Automated kinematics measurement and aerodynamics of a bioinspired flapping rotary wing’, J. Bionic Eng., 2017, 14, (4), pp. 726737.
    2. 2)
      • 72. Heathcote, S., Gursul, I.: ‘Jet switching phenomenon for a periodically plunging airfoil’, Phys. Fluids, 2007, 19, (2), p. 027104.
    3. 3)
      • 60. Lim, T.T., Teo, C.J., Lua, K.B., et al: ‘On the prolong attachment of leading-edge vortex on a flapping wing’, Mod. Phys. Lett. B, 2009, 23, (3), pp. 357360.
    4. 4)
      • 100. Benedict, M., Jarugumilli, T., Lakshminarayan, V., et al: ‘Effect of flow curvature on forward flight performance of a micro-air-vehicle-scale cycloidal-rotor’, AIAA J., 2014, 52, (6), pp. 11591169.
    5. 5)
      • 13. Sun, M.: ‘Insect flight dynamics: stability and control’, Rev. Mod. Phys., 2014, 86, (2), p. 615.
    6. 6)
      • 75. Visbal, M.R.: ‘High-fidelity simulation of transitional flows past a plunging airfoil’, AIAA J., 2009, 47, (11), pp. 26852697.
    7. 7)
      • 62. Wojcik, C.J., Buchholz, J.H.: ‘Vorticity transport in the leading-edge vortex on a rotating blade’, J. Fluid Mech., 2014, 743, pp. 249261.
    8. 8)
      • 83. Li, H., Guo, S.J., Zhang, Y.L., et al: ‘Unsteady aerodynamic and optimal kinematic analysis of a micro flapping wing rotor’, Aerosp. Sci. Technol., 2017, 63, pp. 167178.
    9. 9)
      • 29. Zou, Y., Zhang, W., Ke, X., et al: ‘The design and microfabrication of a sub 100 mg insect-scale flapping-wing robot’, Micro Nano Lett., 2017, 12, (5), pp. 297300.
    10. 10)
      • 89. Percin, M., van Oudheusden, B.W., de Croon, , et al: ‘Force generation and wing deformation characteristics of a flapping-wing micro air vehicle ‘DelFly II’ in hovering flight’, Bioinspir. Biomim., 2016, 11, (3), p. 036014.
    11. 11)
      • 64. Wang, Z.J.: ‘Dissecting insect flight’, Annu. Rev. Fluid Mech., 2005, 37, pp. 183210.
    12. 12)
      • 98. Benedict, M., Mattaboni, M., Chopra, I., et al: ‘Aeroelastic analysis of a micro-air-vehicle-scale cycloidal rotor in hover’, AIAA J., 2011, 49, (11), pp. 24302443.
    13. 13)
      • 63. Kruyt, J.W., van Heijst, G.F., Altshuler, D.L., et al: ‘Power reduction and the radial limit of stall delay in revolving wings of different aspect ratio’, J. R. Soc. Interface, 2015, 12, (105), p. 20150051.
    14. 14)
      • 107. Zhang, Y.L., Sun, M.: ‘Dynamic flight stability of a hovering model insect: lateral motion’, Acta Mech. Sin., 2010, 26, (2), pp. 175190.
    15. 15)
      • 105. Cheng, X., Sun, M.: ‘Very small insects use novel wing flapping and drag principle to generate the weight-supporting vertical force’, J. Fluid Mech., 2018, 855, pp. 646670.
    16. 16)
      • 8. ‘Mesicopter’. Available at https://nplab.stanford.edu/publications/mesicopter-meso-scale-flight-vehicle, accessed 19 December 2018.
    17. 17)
      • 5. Ammoo, M.S., Dahalan, M.N.: ‘Micro air vehicle: technology review and design study’. Proc. 1st Regional Conf. on Vehicle Engineering & Technology, Kuala Lumpur, Malaysia, July 2006.
    18. 18)
      • 47. Sun, M.: ‘High-lift generation and power requirements of insect flight’, Fluid Dyn. Res., 2005, 37, (1–2), p. 21.
    19. 19)
      • 49. Weis-Fogh, T.: ‘Quick estimates of flight fitness in hovering animals, including novel mechanisms for lift production’, J. Exp. Biol., 1973, 59, (1), pp. 169230.
    20. 20)
      • 3. Ashley, S.: ‘Palm-size spy planes’, Mech. Eng., 1998, 120, (2), pp. 7478.
    21. 21)
      • 40. De Clercq, K.M., de Kat, R., Remes, B., et al: ‘Aerodynamic experiments on DelFly II: unsteady lift enhancement’, Int. J. Micro Air Veh., 2009, 1, (4), pp. 255262.
    22. 22)
      • 54. Bomphrey, R.J., Lawson, N.J., Harding, N.J., et al: ‘The aerodynamics of Manduca sexta: digital particle image velocimetry analysis of the leading-edge vortex’, J. Exp. Biol., 2005, 208, (6), pp. 10791094.
    23. 23)
      • 42. Benedict, M., Ramasamy, M., Chopra, I., et al: ‘Performance of a cycloidal rotor concept for micro air vehicle applications’, J. Am. Helicopter Soc., 2010, 55, (2), pp. 2200222002.
    24. 24)
      • 41. De Wagter, C., Karásek, M., de Croon, G.: ‘Quad-thopter: tailless flapping wing robot with four pairs of wings’, Int. J. Micro Air Veh., 2018, 10, (3), pp. 244253.
    25. 25)
      • 45. Okamoto, M., Yasuda, K., Azuma, A.: ‘Aerodynamic characteristics of the wings and body of a dragonfly’, J. Exp. Biol., 1996, 199, (2), pp. 281294.
    26. 26)
      • 17. Ennos, A.R.: ‘Inertial and aerodynamic torques on the wings of Diptera in flight’, J. Exp. Biol., 1989, 142, (1), pp. 8795.
    27. 27)
      • 43. Karásek, M., Muijres, F.T., De Wagter, , et al: ‘A tailless aerial robotic flapper reveals that flies use torque coupling in rapid banked turns’, Science, 2018, 361, (6407), pp. 10891094.
    28. 28)
      • 69. Sun, M., Tang, J.: ‘Unsteady aerodynamic force generation by a model fruit fly wing in flapping motion’, J. Exp. Biol., 2002, 205, (1), pp. 5570.
    29. 29)
      • 12. Taylor, G.K., Krapp, H.G.: ‘Sensory systems and flight stability: what do insects measure and why?’, Adv. Insect Physiol., 2007, 34, pp. 231316.
    30. 30)
      • 55. Wu, J.H., Sun, M.: ‘Unsteady aerodynamic forces of a flapping wing’, J. Exp. Biol., 2004, 207, (7), pp. 11371150.
    31. 31)
      • 67. Birch, J.M., Dickinson, M.H.: ‘The influence of wing–wake interactions on the production of aerodynamic forces in flapping flight’, J. Exp. Biol., 2003, 206, (13), pp. 22572272.
    32. 32)
      • 81. Wen, Q.Q., Guo, S.J., Li, H., et al: ‘Nonlinear dynamics of a flapping rotary wing: modeling and optimal wing kinematic analysis’, Chinese J. Aeronaut., 2018, 31, (5), pp. 10411052.
    33. 33)
      • 106. Sun, M., Xiong, Y.: ‘Dynamic flight stability of a hovering bumblebee’, J. Exp. Biol., 2005, 208, (3), pp. 447459.
    34. 34)
      • 93. Wang, Z.J., Russell, D.: ‘Effect of forewing and hindwing interactions on aerodynamic forces and power in hovering dragonfly flight’, Phys. Rev. Lett., 2007, 99, (14), p. 148101.
    35. 35)
      • 30. James, J., Iyer, V., Chukewad, Y., et al: ‘Liftoff of a 190 mg laser-powered aerial vehicle: The lightest wireless robot to Fly’. 2018 IEEE Int. Conf. on Robotics and Automation (ICRA), Brisbane, Australia, May 2018, pp. 18.
    36. 36)
      • 58. Lentink, D., Dickinson, M.H.: ‘Rotational accelerations stabilize leading edge vortices on revolving fly wings’, J. Exp. Biol., 2009, 212, (16), pp. 27052719.
    37. 37)
      • 21. Tobalske, B., Dial, K.: ‘Flight kinematics of black-billed magpies and pigeons over a wide range of speeds’, J. Exp. Biol., 1996, 199, (2), pp. 263280.
    38. 38)
      • 73. Young, J., Lai, J.C.S.: ‘Oscillation frequency and amplitude effects on the wake of a plunging airfoil’, AIAA J., 2004, 42, (10), pp. 20422052.
    39. 39)
      • 56. Birch, J.M., Dickinson, M.H.: ‘Spanwise flow and the attachment of the leading-edge vortex on insect wings’, Nature, 2001, 412, (6848), p. 729.
    40. 40)
      • 28. Ma, K.Y., Felton, S.M., Wood, R.J.: ‘Design, fabrication, and modeling of the split actuator microrobotic bee’. 2012 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), Vilamoura, Portugal, October 2012, pp. 11331140.
    41. 41)
      • 104. Zhu, H.J., Sun, M.: ‘Unsteady aerodynamic force mechanisms of a hoverfly hovering with a short stroke-amplitude’, Phys. Fluids, 2017, 29, (8), p. 081901.
    42. 42)
      • 2. McMichael, J.M., Francis, M.S.: ‘Micro air vehicles-toward a new dimension in flight’ (DARPA, Arlington, 1997).
    43. 43)
      • 71. Lai, J.C.S., Platzer, M.F.: ‘Jet characteristics of a plunging airfoil’, AIAA J., 1999, 37, (12), pp. 15291537.
    44. 44)
      • 10. Bayiz, Y., Ghanaatpishe, M., Fathy, H., et al: ‘Hovering efficiency comparison of rotary and flapping flight for rigid rectangular wings via dimensionless multi-objective optimization’, Bioinspir. Biomim., 2018, 13, (4), p. 046002.
    45. 45)
      • 92. Sun, M., Huang, H.: ‘Dragonfly forewing-hindwing interaction at various flight speeds and wing phasing’, AIAA J., 2007, 45, (2), pp. 508511.
    46. 46)
      • 4. Grasmeyer, J.M., Keennon, M.T.: ‘Development of the black widow micro air vehicle’. 39th Aerospace Sciences Meeting and Exhibit, Aerospace Sciences Meetings, Reno, NV USA, January 2001, p. 127.
    47. 47)
      • 70. Jones, K.D., Dohring, C.M., Platzer, M.F.: ‘Experimental and computational investigation of the Knoller-Betz effect’, AIAA J., 1998, 36, (7), pp. 12401246.
    48. 48)
      • 27. Chen, Z., Xu, J., Liu, B., et al: ‘Structural integrity analysis of transmission structure in flapping-wing micro aerial vehicle via 3D printing’, Eng. Fail. Anal., 2019, 96, pp. 1830.
    49. 49)
      • 109. Wu, J.H., Sun, M.: ‘Floquet stability analysis of the longitudinal dynamics of two hovering model insects’, J. R. Soc. Interface, 2012, 9, (74), pp. 20332046.
    50. 50)
      • 65. Wang, Z.J., Birch, J.M., Dickinson, M.H.: ‘Unsteady forces and flows in low reynolds number hovering flight: two-dimensional computations vs robotic wing experiments’, J. Exp. Biol., 2004, 207, (3), pp. 449460.
    51. 51)
      • 77. Akkala, J.M., Panah, A.E., Buchholz, J.H.: ‘Vortex dynamics and performance of flexible and rigid plunging airfoils’, J. Fluid Struct., 2015, 54, pp. 103121.
    52. 52)
      • 23. Warrick, D.R., Tobalske, B.W., Powers, D.R.: ‘Aerodynamics of the hovering hummingbird’, Nature, 2005, 435, (7045), p. 1094.
    53. 53)
      • 18. Dudley, R., Ellington, C.P.: ‘Mechanics of forward flight in bumblebees: I. Kinematics and morphology’, J. Exp. Biol., 1990, 148, (1), pp. 1952.
    54. 54)
      • 1. Anderson, J.D.Jr.: ‘Fundamentals of aerodynamics’ (McGraw-Hill Education Press, New York, 2010).
    55. 55)
      • 108. Liang, B., Sun, M.: ‘Nonlinear flight dynamics and stability of hovering model insects’, J. R. Soc. Interface, 2013, 10, (85), p. 20130269.
    56. 56)
      • 32. Phan, H.V., Au, T.K.L., Park, H.C.: ‘Clap-and-fling mechanism in a hovering insect-like two-winged flapping-wing micro air vehicle’, Roy. Soc. Open Sci., 2016, 3, (12), p. 160746.
    57. 57)
      • 36. Jones, K.D., Platzer, M.F.: ‘Design and development considerations for biologically inspired flapping-wing micro air vehicles’, Exp. Fluids, 2009, 46, (5), pp. 799810.
    58. 58)
      • 91. Wang, J.K., Sun, M.: ‘A computational study of the aerodynamics and forewing-hindwing interaction of a model dragonfly in forward flight’, J. Exp. Biol., 2005, 208, (19), pp. 37853804.
    59. 59)
      • 31. Karpelson, M., Wei, G.Y., Wood, R.J.: ‘A review of actuation and power electronics options for flapping-wing robotic insects’. 2008 IEEE Int. Conf. on Robotics and Automation (ICRA), Pasadena, CA USA, May 2008, pp. 779786.
    60. 60)
      • 94. Amiralaei, M.R., Alighanbari, H., Hashemi, S.M.: ‘An investigation into the effects of unsteady parameters on the aerodynamics of a low reynolds number pitching airfoil’, J. Fluid Struct., 2010, 26, (6), pp. 979993.
    61. 61)
      • 66. Chen, L., Wu, J.H., Cheng, B.: ‘Volumetric measurement and vorticity dynamics of leading-edge vortex formation on a revolving wing’, Exp. Fluids, 2019, 60, p. 12.
    62. 62)
      • 88. Chen, L., Wu, J.H., Zhou, C., et al: ‘Unsteady aerodynamics of a pitching-flapping-perturbed revolving wing at low Reynolds number’, Phys. Fluids, 2018, 30, (5), p. 051903.
    63. 63)
      • 26. Phan, H.V., Kang, T., Park, H.C.: ‘Design and stable flight of a 21 g insect-like tailless flapping-wing micro air vehicle with angular rates feedback control’, Bioinspir. Biomim., 2017, 12, (3), p. 036006.
    64. 64)
      • 22. Park, K.J., Rosén, M., Hedenström, A.: ‘Flight kinematics of the barn swallow (Hirundo rustica) over a wide range of speeds in a wind tunnel’, J. Exp. Biol., 2001, 204, (15), pp. 27412750.
    65. 65)
      • 6. ‘ProxDynamics. Black Hornet’. Available at http://www.proxdynamics.com/products/pd-100-black-hornet.1, accessed 19 December 2018.
    66. 66)
      • 9. Wu, J.H., Zhou, C., Zhang, Y.L.: ‘Aerodynamic power efficiency comparison of various micro-air-vehicle layouts in hovering flight’, AIAA J., 2017, 55, (4), pp. 12651278.
    67. 67)
      • 37. Fitchett, B.K.: ‘Development and investigation of a flapping rotor for micro air vehicles’. PhD thesis, University of Maryland, 2007.
    68. 68)
      • 25. Karásek, M., Hua, A., Nan, Y., et al: ‘Pitch and roll control mechanism for a hovering flapping wing MAV’, Int. J Micro Air Veh., 2014, 6, (4), pp. 253264.
    69. 69)
      • 50. Lighthill, M.J.: ‘On the Weis-Fogh mechanism of lift generation’, J. Fluid Mech., 1973, 60, (1), pp. 117.
    70. 70)
      • 87. Wu, J.H., Chen, L., Zhou, C., et al: ‘Aerodynamics of a flapping-perturbed revolving wing’, AIAA J., 2018, to appear.
    71. 71)
      • 7. ‘µFR-II’. Available at https://en.wikipedia.org/wiki/Seiko_Epson_Micro_flying_robot, accessed 19 December 2018.
    72. 72)
      • 44. Wakeling, J.M., Ellington, C.P.: ‘Dragonfly flight. I. Gliding flight and steady-state aerodynamic forces’, J. Exp. Biol., 1997, 200, (3), pp. 543556.
    73. 73)
      • 53. Ellington, C.P., Van Den Berg, C., Willmott, A.P., et al: ‘Leading-edge vortices in insect flight’, Nature, 1996, 384, (6610), p. 626.
    74. 74)
      • 34. Chen, Y., Gravish, N., Desbiens, A.L., et al: ‘Experimental and computational studies of the aerodynamic performance of a flapping and passively rotating insect wing’, J. Fluid Mech., 2016, 791, pp. 133.
    75. 75)
      • 96. Tian, W., Bodling, A., Liu, H., et al: ‘An experimental study of the effects of pitch-pivot-point location on the propulsion performance of a pitching airfoil’, J. Fluid Struct., 2016, 60, pp. 130142.
    76. 76)
      • 39. Wu, J.H., Zhou, C., Zhang, Y.L: ‘A novel design in micro-air-vehicle: flapping rotary wings’, Appl. Mech. Mater., 2012, 232, pp. 189193.
    77. 77)
      • 74. Ashraf, M.A., Young, J., Lai, J.C.S.: ‘Oscillation frequency and amplitude effects on plunging airfoil propulsion and flow periodicity’, AIAA J., 2012, 50, (11), pp. 23082324.
    78. 78)
      • 102. Van Truong, T., Le, T.Q., Byun, D., et al: ‘Flexible wing kinematics of a free-flying beetle (Rhinoceros beetle Trypoxylus dichotomus)’, J. Bionic Eng., 2012, 9, (2), pp. 177184.
    79. 79)
      • 59. Jardin, T.: ‘Coriolis effect and the attachment of the leading edge vortex’, J. Fluid Mech., 2017, 820, pp. 312340.
    80. 80)
      • 95. Yilmaz, T., Ol, M., Rockwell, D.: ‘Scaling of flow separation on a pitching low aspect ratio plate’, J. Fluid Struct., 2010, 26, (6), pp. 10341041.
    81. 81)
      • 46. Sane, S.P.: ‘The aerodynamics of insect flight’, J. Exp. Biol., 2003, 206, (23), pp. 41914208.
    82. 82)
      • 35. Ma, K.Y., Chirarattananon, P., Fuller, S.B., et al: ‘Controlled flight of a biologically inspired, insect-scale robot’, Science, 2013, 340, (6132), pp. 603607.
    83. 83)
      • 48. Chin, D.D., Lentink, D.: ‘Flapping wing aerodynamics: from insects to vertebrates’, J. Exp. Biol., 2016, 219, (7), pp. 920932.
    84. 84)
      • 80. Wu, J.H., Wang, D., Zhang, Y.L.: ‘Aerodynamic analysis of a flapping rotary wing at a low Reynolds number’, AIAA J., 2015, 53, (10), pp. 29512966.
    85. 85)
      • 11. Lentink, D.: ‘Biomimetics: flying like a fly’, Nature, 2013, 498, (7454), p. 306.
    86. 86)
      • 82. Wang, D., Wu, J.H., Zhang, Y.L.: ‘Effects of geometric parameters on flapping rotary wings at Low reynolds numbers’, AIAA J., 2018, 56, (4), pp. 13721387.
    87. 87)
      • 84. Zhou, C., Wu, J.H., Guo, S.J., et al: ‘Experimental study on the lift generated by a flapping rotary wing applied in a micro air vehicle’, Proc. Inst. Mech. Eng. G, J. Aerosp. Eng., 2014, 228, (11), pp. 20832093.
    88. 88)
      • 51. Maxworthy, T.: ‘Experiments on the Weis-Fogh mechanism of lift generation by insects in hovering flight. Part 1. Dynamics of the ‘fling’’, J. Fluid Mech., 1979, 93, (1), pp. 4763.
    89. 89)
      • 90. Deng, S., Percin, M., van Oudheusden, , et al: ‘Numerical simulation of a flexible x-wing flapping-wing micro air vehicle’, AIAA J., 2017, 55, (7), pp. 22952306.
    90. 90)
      • 14. Pines, D.J., Bohorquez, F.: ‘Challenges facing future micro-air-vehicle development’, J. Aircraft, 2006, 43, (2), pp. 290305.
    91. 91)
      • 38. Guo, S., Li, D., Matteo, N., et al: ‘Design, experiment and aerodynamic calculation of a flapping wing rotor micro aerial vehicle’. 52nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conf., Denver, CO USA, April 2011, p. 1988.
    92. 92)
      • 101. Dudley, R.: ‘Biomechanics of flight in neotropical butterflies: morphometrics and kinematics’, J. Exp. Biol., 1990, 150, (1), pp. 3753.
    93. 93)
      • 24. Keennon, M., Klingebiel, K., Won, H.: ‘Development of the nano hummingbird: a tailless flapping-wing micro air vehicle’. 50th AIAA aerospace sciences meeting including the new horizons forum and aerospace exposition, Nashville, TN USA, January 2012, p. 588.
    94. 94)
      • 68. Dickinson, M.H., Lehmann, F.O., Sane, S.P.: ‘Wing rotation and the aerodynamic basis of insect flight’, Science, 1999, 284, (5422), pp. 19541960.
    95. 95)
      • 99. Benedict, M., Jarugumilli, T., Chopra, I.: ‘Experimental optimization of MAV-scale cycloidal rotor performance’, J. Am. Helicopter Soc., 2011, 56, (2), pp. 2200522005.
    96. 96)
      • 97. Sirohi, J., Parsons, E., Chopra, I.: ‘Hover performance of a cycloidal rotor for a micro air vehicle’, J. Am. Helicopter Soc., 2007, 52, (3), pp. 263279.
    97. 97)
      • 103. Bomphrey, R.J., Nakata, T., Phillips, N., et al: ‘Smart wing rotation and trailing-edge vortices enable high frequency mosquito flight’, Nature, 2017, 544, (7648), pp. 9295.
    98. 98)
      • 78. Zhou, C., Zhang, Y.L., Wu, J. H.: ‘Unsteady aerodynamic forces and power consumption of a micro flapping rotary wing in hovering flight’, J. Bionic Eng., 2018, 15, (2), pp. 298312.
    99. 99)
      • 79. Guo, S.J., Li, D.C., Wu, J.H.: ‘Theoretical and experimental study of a piezoelectric flapping wing rotor for micro aerial vehicle’, Aerosp. Sci. Technol., 2012, 23, (1), pp. 429438.
    100. 100)
      • 57. Cheng, B., Sane, S.P., Barbera, G., et al: ‘Three-dimensional flow visualization and vorticity dynamics in revolving wings’, Exp. Fluids, 2013, 54, (1), p. 1423.
    101. 101)
      • 85. Chen, L., Zhang, Y.L., Wu, J.H.: ‘Study on lift enhancement of a flapping rotary wing by a bore-hole design’, Proc. Inst. Mech. Eng. G, J Aerosp. Eng., 2018, 232, (7), pp. 13151333.
    102. 102)
      • 20. Tobalske, B.W., Warrick, D.R., Clark, C.J., et al: ‘Three-dimensional kinematics of hummingbird flight’, J. Exp. Biol., 2007, 210, (13), pp. 23682382.
    103. 103)
      • 15. Hsu, C.K., Evans, J., Vytla, S., et al: ‘Development of flapping wing micro air vehicles-design, CFD, experiment and actual flight’. 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Orlando, FL USA, January 2010, p. 1018.
    104. 104)
      • 61. Wong, J.G., Kriegseis, J., Rival, D.E.: ‘An investigation into vortex growth and stabilization for two-dimensional plunging and flapping plates with varying sweep’, J. Fluid Struct., 2013, 43, pp. 231243.
    105. 105)
      • 33. Phan, H.V., Park, H.C.: ‘Pitch, roll, and yaw moment generator for insect-like tailless flapping-wing MAV’. 2016 SPIE Bioinspiration, Biomimetics, and Bioreplication, Las Vegas, NV, USA, March 2016, vol. 9797, p. 97970H.
    106. 106)
      • 76. Young, J., Lai, J.C.: ‘On the aerodynamic forces of a plunging airfoil’, J. Mech. Sci. Technol., 2007, 21, (9), p. 1388.
    107. 107)
      • 16. Ellington, C.P.: ‘The aerodynamics of hovering insect flight. III. Kinematics’, Phil. Trans. R. Soc. Lond. B, 1984, 305, (1122), pp. 4178.
    108. 108)
      • 52. Dickinson, M.H., Gotz, K.G.: ‘Unsteady aerodynamic performance of model wings at low Reynolds numbers’, J. Exp. Biol., 1993, 174, (1), pp. 4564.
    109. 109)
      • 19. Willmott, A.P., Ellington, C.P.: ‘The mechanics of flight in the hawkmoth Manduca sexta. I. Kinematics of hovering and forward flight’, J Exp. Biol., 1997, 200, (21), pp. 27052722.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-csr.2018.0007
Loading

Related content

content/journals/10.1049/iet-csr.2018.0007
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address