http://iet.metastore.ingenta.com
1887

access icon openaccess Aerodynamic mechanisms in bio-inspired micro air vehicles: a review in the light of novel compound layouts

Loading full text...

Full text loading...

/deliver/fulltext/iet-csr/1/1/IET-CSR.2018.0007.html;jsessionid=1j1d12k1bmxmh.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fiet-csr.2018.0007&mimeType=html&fmt=ahah

References

    1. 1)
      • 1. Anderson, J.D.Jr.: ‘Fundamentals of aerodynamics’ (McGraw-Hill Education Press, New York, 2010).
    2. 2)
      • 2. McMichael, J.M., Francis, M.S.: ‘Micro air vehicles-toward a new dimension in flight’ (DARPA, Arlington, 1997).
    3. 3)
      • 3. Ashley, S.: ‘Palm-size spy planes’, Mech. Eng., 1998, 120, (2), pp. 7478.
    4. 4)
      • 4. Grasmeyer, J.M., Keennon, M.T.: ‘Development of the black widow micro air vehicle’. 39th Aerospace Sciences Meeting and Exhibit, Aerospace Sciences Meetings, Reno, NV USA, January 2001, p. 127.
    5. 5)
      • 5. Ammoo, M.S., Dahalan, M.N.: ‘Micro air vehicle: technology review and design study’. Proc. 1st Regional Conf. on Vehicle Engineering & Technology, Kuala Lumpur, Malaysia, July 2006.
    6. 6)
      • 6. ‘ProxDynamics. Black Hornet’. Available at http://www.proxdynamics.com/products/pd-100-black-hornet.1, accessed 19 December 2018.
    7. 7)
      • 7. ‘µFR-II’. Available at https://en.wikipedia.org/wiki/Seiko_Epson_Micro_flying_robot, accessed 19 December 2018.
    8. 8)
      • 8. ‘Mesicopter’. Available at https://nplab.stanford.edu/publications/mesicopter-meso-scale-flight-vehicle, accessed 19 December 2018.
    9. 9)
      • 9. Wu, J.H., Zhou, C., Zhang, Y.L.: ‘Aerodynamic power efficiency comparison of various micro-air-vehicle layouts in hovering flight’, AIAA J., 2017, 55, (4), pp. 12651278.
    10. 10)
      • 10. Bayiz, Y., Ghanaatpishe, M., Fathy, H., et al: ‘Hovering efficiency comparison of rotary and flapping flight for rigid rectangular wings via dimensionless multi-objective optimization’, Bioinspir. Biomim., 2018, 13, (4), p. 046002.
    11. 11)
      • 11. Lentink, D.: ‘Biomimetics: flying like a fly’, Nature, 2013, 498, (7454), p. 306.
    12. 12)
      • 12. Taylor, G.K., Krapp, H.G.: ‘Sensory systems and flight stability: what do insects measure and why?’, Adv. Insect Physiol., 2007, 34, pp. 231316.
    13. 13)
      • 13. Sun, M.: ‘Insect flight dynamics: stability and control’, Rev. Mod. Phys., 2014, 86, (2), p. 615.
    14. 14)
      • 14. Pines, D.J., Bohorquez, F.: ‘Challenges facing future micro-air-vehicle development’, J. Aircraft, 2006, 43, (2), pp. 290305.
    15. 15)
      • 15. Hsu, C.K., Evans, J., Vytla, S., et al: ‘Development of flapping wing micro air vehicles-design, CFD, experiment and actual flight’. 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Orlando, FL USA, January 2010, p. 1018.
    16. 16)
      • 16. Ellington, C.P.: ‘The aerodynamics of hovering insect flight. III. Kinematics’, Phil. Trans. R. Soc. Lond. B, 1984, 305, (1122), pp. 4178.
    17. 17)
      • 17. Ennos, A.R.: ‘Inertial and aerodynamic torques on the wings of Diptera in flight’, J. Exp. Biol., 1989, 142, (1), pp. 8795.
    18. 18)
      • 18. Dudley, R., Ellington, C.P.: ‘Mechanics of forward flight in bumblebees: I. Kinematics and morphology’, J. Exp. Biol., 1990, 148, (1), pp. 1952.
    19. 19)
      • 19. Willmott, A.P., Ellington, C.P.: ‘The mechanics of flight in the hawkmoth Manduca sexta. I. Kinematics of hovering and forward flight’, J Exp. Biol., 1997, 200, (21), pp. 27052722.
    20. 20)
      • 20. Tobalske, B.W., Warrick, D.R., Clark, C.J., et al: ‘Three-dimensional kinematics of hummingbird flight’, J. Exp. Biol., 2007, 210, (13), pp. 23682382.
    21. 21)
      • 21. Tobalske, B., Dial, K.: ‘Flight kinematics of black-billed magpies and pigeons over a wide range of speeds’, J. Exp. Biol., 1996, 199, (2), pp. 263280.
    22. 22)
      • 22. Park, K.J., Rosén, M., Hedenström, A.: ‘Flight kinematics of the barn swallow (Hirundo rustica) over a wide range of speeds in a wind tunnel’, J. Exp. Biol., 2001, 204, (15), pp. 27412750.
    23. 23)
      • 23. Warrick, D.R., Tobalske, B.W., Powers, D.R.: ‘Aerodynamics of the hovering hummingbird’, Nature, 2005, 435, (7045), p. 1094.
    24. 24)
      • 24. Keennon, M., Klingebiel, K., Won, H.: ‘Development of the nano hummingbird: a tailless flapping-wing micro air vehicle’. 50th AIAA aerospace sciences meeting including the new horizons forum and aerospace exposition, Nashville, TN USA, January 2012, p. 588.
    25. 25)
      • 25. Karásek, M., Hua, A., Nan, Y., et al: ‘Pitch and roll control mechanism for a hovering flapping wing MAV’, Int. J Micro Air Veh., 2014, 6, (4), pp. 253264.
    26. 26)
      • 26. Phan, H.V., Kang, T., Park, H.C.: ‘Design and stable flight of a 21 g insect-like tailless flapping-wing micro air vehicle with angular rates feedback control’, Bioinspir. Biomim., 2017, 12, (3), p. 036006.
    27. 27)
      • 27. Chen, Z., Xu, J., Liu, B., et al: ‘Structural integrity analysis of transmission structure in flapping-wing micro aerial vehicle via 3D printing’, Eng. Fail. Anal., 2019, 96, pp. 1830.
    28. 28)
      • 28. Ma, K.Y., Felton, S.M., Wood, R.J.: ‘Design, fabrication, and modeling of the split actuator microrobotic bee’. 2012 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), Vilamoura, Portugal, October 2012, pp. 11331140.
    29. 29)
      • 29. Zou, Y., Zhang, W., Ke, X., et al: ‘The design and microfabrication of a sub 100 mg insect-scale flapping-wing robot’, Micro Nano Lett., 2017, 12, (5), pp. 297300.
    30. 30)
      • 30. James, J., Iyer, V., Chukewad, Y., et al: ‘Liftoff of a 190 mg laser-powered aerial vehicle: The lightest wireless robot to Fly’. 2018 IEEE Int. Conf. on Robotics and Automation (ICRA), Brisbane, Australia, May 2018, pp. 18.
    31. 31)
      • 31. Karpelson, M., Wei, G.Y., Wood, R.J.: ‘A review of actuation and power electronics options for flapping-wing robotic insects’. 2008 IEEE Int. Conf. on Robotics and Automation (ICRA), Pasadena, CA USA, May 2008, pp. 779786.
    32. 32)
      • 32. Phan, H.V., Au, T.K.L., Park, H.C.: ‘Clap-and-fling mechanism in a hovering insect-like two-winged flapping-wing micro air vehicle’, Roy. Soc. Open Sci., 2016, 3, (12), p. 160746.
    33. 33)
      • 33. Phan, H.V., Park, H.C.: ‘Pitch, roll, and yaw moment generator for insect-like tailless flapping-wing MAV’. 2016 SPIE Bioinspiration, Biomimetics, and Bioreplication, Las Vegas, NV, USA, March 2016, vol. 9797, p. 97970H.
    34. 34)
      • 34. Chen, Y., Gravish, N., Desbiens, A.L., et al: ‘Experimental and computational studies of the aerodynamic performance of a flapping and passively rotating insect wing’, J. Fluid Mech., 2016, 791, pp. 133.
    35. 35)
      • 35. Ma, K.Y., Chirarattananon, P., Fuller, S.B., et al: ‘Controlled flight of a biologically inspired, insect-scale robot’, Science, 2013, 340, (6132), pp. 603607.
    36. 36)
      • 36. Jones, K.D., Platzer, M.F.: ‘Design and development considerations for biologically inspired flapping-wing micro air vehicles’, Exp. Fluids, 2009, 46, (5), pp. 799810.
    37. 37)
      • 37. Fitchett, B.K.: ‘Development and investigation of a flapping rotor for micro air vehicles’. PhD thesis, University of Maryland, 2007.
    38. 38)
      • 38. Guo, S., Li, D., Matteo, N., et al: ‘Design, experiment and aerodynamic calculation of a flapping wing rotor micro aerial vehicle’. 52nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conf., Denver, CO USA, April 2011, p. 1988.
    39. 39)
      • 39. Wu, J.H., Zhou, C., Zhang, Y.L: ‘A novel design in micro-air-vehicle: flapping rotary wings’, Appl. Mech. Mater., 2012, 232, pp. 189193.
    40. 40)
      • 40. De Clercq, K.M., de Kat, R., Remes, B., et al: ‘Aerodynamic experiments on DelFly II: unsteady lift enhancement’, Int. J. Micro Air Veh., 2009, 1, (4), pp. 255262.
    41. 41)
      • 41. De Wagter, C., Karásek, M., de Croon, G.: ‘Quad-thopter: tailless flapping wing robot with four pairs of wings’, Int. J. Micro Air Veh., 2018, 10, (3), pp. 244253.
    42. 42)
      • 42. Benedict, M., Ramasamy, M., Chopra, I., et al: ‘Performance of a cycloidal rotor concept for micro air vehicle applications’, J. Am. Helicopter Soc., 2010, 55, (2), pp. 2200222002.
    43. 43)
      • 43. Karásek, M., Muijres, F.T., De Wagter, , et al: ‘A tailless aerial robotic flapper reveals that flies use torque coupling in rapid banked turns’, Science, 2018, 361, (6407), pp. 10891094.
    44. 44)
      • 44. Wakeling, J.M., Ellington, C.P.: ‘Dragonfly flight. I. Gliding flight and steady-state aerodynamic forces’, J. Exp. Biol., 1997, 200, (3), pp. 543556.
    45. 45)
      • 45. Okamoto, M., Yasuda, K., Azuma, A.: ‘Aerodynamic characteristics of the wings and body of a dragonfly’, J. Exp. Biol., 1996, 199, (2), pp. 281294.
    46. 46)
      • 46. Sane, S.P.: ‘The aerodynamics of insect flight’, J. Exp. Biol., 2003, 206, (23), pp. 41914208.
    47. 47)
      • 47. Sun, M.: ‘High-lift generation and power requirements of insect flight’, Fluid Dyn. Res., 2005, 37, (1–2), p. 21.
    48. 48)
      • 48. Chin, D.D., Lentink, D.: ‘Flapping wing aerodynamics: from insects to vertebrates’, J. Exp. Biol., 2016, 219, (7), pp. 920932.
    49. 49)
      • 49. Weis-Fogh, T.: ‘Quick estimates of flight fitness in hovering animals, including novel mechanisms for lift production’, J. Exp. Biol., 1973, 59, (1), pp. 169230.
    50. 50)
      • 50. Lighthill, M.J.: ‘On the Weis-Fogh mechanism of lift generation’, J. Fluid Mech., 1973, 60, (1), pp. 117.
    51. 51)
      • 51. Maxworthy, T.: ‘Experiments on the Weis-Fogh mechanism of lift generation by insects in hovering flight. Part 1. Dynamics of the ‘fling’’, J. Fluid Mech., 1979, 93, (1), pp. 4763.
    52. 52)
      • 52. Dickinson, M.H., Gotz, K.G.: ‘Unsteady aerodynamic performance of model wings at low Reynolds numbers’, J. Exp. Biol., 1993, 174, (1), pp. 4564.
    53. 53)
      • 53. Ellington, C.P., Van Den Berg, C., Willmott, A.P., et al: ‘Leading-edge vortices in insect flight’, Nature, 1996, 384, (6610), p. 626.
    54. 54)
      • 54. Bomphrey, R.J., Lawson, N.J., Harding, N.J., et al: ‘The aerodynamics of Manduca sexta: digital particle image velocimetry analysis of the leading-edge vortex’, J. Exp. Biol., 2005, 208, (6), pp. 10791094.
    55. 55)
      • 55. Wu, J.H., Sun, M.: ‘Unsteady aerodynamic forces of a flapping wing’, J. Exp. Biol., 2004, 207, (7), pp. 11371150.
    56. 56)
      • 56. Birch, J.M., Dickinson, M.H.: ‘Spanwise flow and the attachment of the leading-edge vortex on insect wings’, Nature, 2001, 412, (6848), p. 729.
    57. 57)
      • 57. Cheng, B., Sane, S.P., Barbera, G., et al: ‘Three-dimensional flow visualization and vorticity dynamics in revolving wings’, Exp. Fluids, 2013, 54, (1), p. 1423.
    58. 58)
      • 58. Lentink, D., Dickinson, M.H.: ‘Rotational accelerations stabilize leading edge vortices on revolving fly wings’, J. Exp. Biol., 2009, 212, (16), pp. 27052719.
    59. 59)
      • 59. Jardin, T.: ‘Coriolis effect and the attachment of the leading edge vortex’, J. Fluid Mech., 2017, 820, pp. 312340.
    60. 60)
      • 60. Lim, T.T., Teo, C.J., Lua, K.B., et al: ‘On the prolong attachment of leading-edge vortex on a flapping wing’, Mod. Phys. Lett. B, 2009, 23, (3), pp. 357360.
    61. 61)
      • 61. Wong, J.G., Kriegseis, J., Rival, D.E.: ‘An investigation into vortex growth and stabilization for two-dimensional plunging and flapping plates with varying sweep’, J. Fluid Struct., 2013, 43, pp. 231243.
    62. 62)
      • 62. Wojcik, C.J., Buchholz, J.H.: ‘Vorticity transport in the leading-edge vortex on a rotating blade’, J. Fluid Mech., 2014, 743, pp. 249261.
    63. 63)
      • 63. Kruyt, J.W., van Heijst, G.F., Altshuler, D.L., et al: ‘Power reduction and the radial limit of stall delay in revolving wings of different aspect ratio’, J. R. Soc. Interface, 2015, 12, (105), p. 20150051.
    64. 64)
      • 64. Wang, Z.J.: ‘Dissecting insect flight’, Annu. Rev. Fluid Mech., 2005, 37, pp. 183210.
    65. 65)
      • 65. Wang, Z.J., Birch, J.M., Dickinson, M.H.: ‘Unsteady forces and flows in low reynolds number hovering flight: two-dimensional computations vs robotic wing experiments’, J. Exp. Biol., 2004, 207, (3), pp. 449460.
    66. 66)
      • 66. Chen, L., Wu, J.H., Cheng, B.: ‘Volumetric measurement and vorticity dynamics of leading-edge vortex formation on a revolving wing’, Exp. Fluids, 2019, 60, p. 12.
    67. 67)
      • 67. Birch, J.M., Dickinson, M.H.: ‘The influence of wing–wake interactions on the production of aerodynamic forces in flapping flight’, J. Exp. Biol., 2003, 206, (13), pp. 22572272.
    68. 68)
      • 68. Dickinson, M.H., Lehmann, F.O., Sane, S.P.: ‘Wing rotation and the aerodynamic basis of insect flight’, Science, 1999, 284, (5422), pp. 19541960.
    69. 69)
      • 69. Sun, M., Tang, J.: ‘Unsteady aerodynamic force generation by a model fruit fly wing in flapping motion’, J. Exp. Biol., 2002, 205, (1), pp. 5570.
    70. 70)
      • 70. Jones, K.D., Dohring, C.M., Platzer, M.F.: ‘Experimental and computational investigation of the Knoller-Betz effect’, AIAA J., 1998, 36, (7), pp. 12401246.
    71. 71)
      • 71. Lai, J.C.S., Platzer, M.F.: ‘Jet characteristics of a plunging airfoil’, AIAA J., 1999, 37, (12), pp. 15291537.
    72. 72)
      • 72. Heathcote, S., Gursul, I.: ‘Jet switching phenomenon for a periodically plunging airfoil’, Phys. Fluids, 2007, 19, (2), p. 027104.
    73. 73)
      • 73. Young, J., Lai, J.C.S.: ‘Oscillation frequency and amplitude effects on the wake of a plunging airfoil’, AIAA J., 2004, 42, (10), pp. 20422052.
    74. 74)
      • 74. Ashraf, M.A., Young, J., Lai, J.C.S.: ‘Oscillation frequency and amplitude effects on plunging airfoil propulsion and flow periodicity’, AIAA J., 2012, 50, (11), pp. 23082324.
    75. 75)
      • 75. Visbal, M.R.: ‘High-fidelity simulation of transitional flows past a plunging airfoil’, AIAA J., 2009, 47, (11), pp. 26852697.
    76. 76)
      • 76. Young, J., Lai, J.C.: ‘On the aerodynamic forces of a plunging airfoil’, J. Mech. Sci. Technol., 2007, 21, (9), p. 1388.
    77. 77)
      • 77. Akkala, J.M., Panah, A.E., Buchholz, J.H.: ‘Vortex dynamics and performance of flexible and rigid plunging airfoils’, J. Fluid Struct., 2015, 54, pp. 103121.
    78. 78)
      • 78. Zhou, C., Zhang, Y.L., Wu, J. H.: ‘Unsteady aerodynamic forces and power consumption of a micro flapping rotary wing in hovering flight’, J. Bionic Eng., 2018, 15, (2), pp. 298312.
    79. 79)
      • 79. Guo, S.J., Li, D.C., Wu, J.H.: ‘Theoretical and experimental study of a piezoelectric flapping wing rotor for micro aerial vehicle’, Aerosp. Sci. Technol., 2012, 23, (1), pp. 429438.
    80. 80)
      • 80. Wu, J.H., Wang, D., Zhang, Y.L.: ‘Aerodynamic analysis of a flapping rotary wing at a low Reynolds number’, AIAA J., 2015, 53, (10), pp. 29512966.
    81. 81)
      • 81. Wen, Q.Q., Guo, S.J., Li, H., et al: ‘Nonlinear dynamics of a flapping rotary wing: modeling and optimal wing kinematic analysis’, Chinese J. Aeronaut., 2018, 31, (5), pp. 10411052.
    82. 82)
      • 82. Wang, D., Wu, J.H., Zhang, Y.L.: ‘Effects of geometric parameters on flapping rotary wings at Low reynolds numbers’, AIAA J., 2018, 56, (4), pp. 13721387.
    83. 83)
      • 83. Li, H., Guo, S.J., Zhang, Y.L., et al: ‘Unsteady aerodynamic and optimal kinematic analysis of a micro flapping wing rotor’, Aerosp. Sci. Technol., 2017, 63, pp. 167178.
    84. 84)
      • 84. Zhou, C., Wu, J.H., Guo, S.J., et al: ‘Experimental study on the lift generated by a flapping rotary wing applied in a micro air vehicle’, Proc. Inst. Mech. Eng. G, J. Aerosp. Eng., 2014, 228, (11), pp. 20832093.
    85. 85)
      • 85. Chen, L., Zhang, Y.L., Wu, J.H.: ‘Study on lift enhancement of a flapping rotary wing by a bore-hole design’, Proc. Inst. Mech. Eng. G, J Aerosp. Eng., 2018, 232, (7), pp. 13151333.
    86. 86)
      • 86. Wu, J.H., Qiu, J., Zhang, Y.L.: ‘Automated kinematics measurement and aerodynamics of a bioinspired flapping rotary wing’, J. Bionic Eng., 2017, 14, (4), pp. 726737.
    87. 87)
      • 87. Wu, J.H., Chen, L., Zhou, C., et al: ‘Aerodynamics of a flapping-perturbed revolving wing’, AIAA J., 2018, to appear.
    88. 88)
      • 88. Chen, L., Wu, J.H., Zhou, C., et al: ‘Unsteady aerodynamics of a pitching-flapping-perturbed revolving wing at low Reynolds number’, Phys. Fluids, 2018, 30, (5), p. 051903.
    89. 89)
      • 89. Percin, M., van Oudheusden, B.W., de Croon, , et al: ‘Force generation and wing deformation characteristics of a flapping-wing micro air vehicle ‘DelFly II’ in hovering flight’, Bioinspir. Biomim., 2016, 11, (3), p. 036014.
    90. 90)
      • 90. Deng, S., Percin, M., van Oudheusden, , et al: ‘Numerical simulation of a flexible x-wing flapping-wing micro air vehicle’, AIAA J., 2017, 55, (7), pp. 22952306.
    91. 91)
      • 91. Wang, J.K., Sun, M.: ‘A computational study of the aerodynamics and forewing-hindwing interaction of a model dragonfly in forward flight’, J. Exp. Biol., 2005, 208, (19), pp. 37853804.
    92. 92)
      • 92. Sun, M., Huang, H.: ‘Dragonfly forewing-hindwing interaction at various flight speeds and wing phasing’, AIAA J., 2007, 45, (2), pp. 508511.
    93. 93)
      • 93. Wang, Z.J., Russell, D.: ‘Effect of forewing and hindwing interactions on aerodynamic forces and power in hovering dragonfly flight’, Phys. Rev. Lett., 2007, 99, (14), p. 148101.
    94. 94)
      • 94. Amiralaei, M.R., Alighanbari, H., Hashemi, S.M.: ‘An investigation into the effects of unsteady parameters on the aerodynamics of a low reynolds number pitching airfoil’, J. Fluid Struct., 2010, 26, (6), pp. 979993.
    95. 95)
      • 95. Yilmaz, T., Ol, M., Rockwell, D.: ‘Scaling of flow separation on a pitching low aspect ratio plate’, J. Fluid Struct., 2010, 26, (6), pp. 10341041.
    96. 96)
      • 96. Tian, W., Bodling, A., Liu, H., et al: ‘An experimental study of the effects of pitch-pivot-point location on the propulsion performance of a pitching airfoil’, J. Fluid Struct., 2016, 60, pp. 130142.
    97. 97)
      • 97. Sirohi, J., Parsons, E., Chopra, I.: ‘Hover performance of a cycloidal rotor for a micro air vehicle’, J. Am. Helicopter Soc., 2007, 52, (3), pp. 263279.
    98. 98)
      • 98. Benedict, M., Mattaboni, M., Chopra, I., et al: ‘Aeroelastic analysis of a micro-air-vehicle-scale cycloidal rotor in hover’, AIAA J., 2011, 49, (11), pp. 24302443.
    99. 99)
      • 99. Benedict, M., Jarugumilli, T., Chopra, I.: ‘Experimental optimization of MAV-scale cycloidal rotor performance’, J. Am. Helicopter Soc., 2011, 56, (2), pp. 2200522005.
    100. 100)
      • 100. Benedict, M., Jarugumilli, T., Lakshminarayan, V., et al: ‘Effect of flow curvature on forward flight performance of a micro-air-vehicle-scale cycloidal-rotor’, AIAA J., 2014, 52, (6), pp. 11591169.
    101. 101)
      • 101. Dudley, R.: ‘Biomechanics of flight in neotropical butterflies: morphometrics and kinematics’, J. Exp. Biol., 1990, 150, (1), pp. 3753.
    102. 102)
      • 102. Van Truong, T., Le, T.Q., Byun, D., et al: ‘Flexible wing kinematics of a free-flying beetle (Rhinoceros beetle Trypoxylus dichotomus)’, J. Bionic Eng., 2012, 9, (2), pp. 177184.
    103. 103)
      • 103. Bomphrey, R.J., Nakata, T., Phillips, N., et al: ‘Smart wing rotation and trailing-edge vortices enable high frequency mosquito flight’, Nature, 2017, 544, (7648), pp. 9295.
    104. 104)
      • 104. Zhu, H.J., Sun, M.: ‘Unsteady aerodynamic force mechanisms of a hoverfly hovering with a short stroke-amplitude’, Phys. Fluids, 2017, 29, (8), p. 081901.
    105. 105)
      • 105. Cheng, X., Sun, M.: ‘Very small insects use novel wing flapping and drag principle to generate the weight-supporting vertical force’, J. Fluid Mech., 2018, 855, pp. 646670.
    106. 106)
      • 106. Sun, M., Xiong, Y.: ‘Dynamic flight stability of a hovering bumblebee’, J. Exp. Biol., 2005, 208, (3), pp. 447459.
    107. 107)
      • 107. Zhang, Y.L., Sun, M.: ‘Dynamic flight stability of a hovering model insect: lateral motion’, Acta Mech. Sin., 2010, 26, (2), pp. 175190.
    108. 108)
      • 108. Liang, B., Sun, M.: ‘Nonlinear flight dynamics and stability of hovering model insects’, J. R. Soc. Interface, 2013, 10, (85), p. 20130269.
    109. 109)
      • 109. Wu, J.H., Sun, M.: ‘Floquet stability analysis of the longitudinal dynamics of two hovering model insects’, J. R. Soc. Interface, 2012, 9, (74), pp. 20332046.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-csr.2018.0007
Loading

Related content

content/journals/10.1049/iet-csr.2018.0007
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address