http://iet.metastore.ingenta.com
1887

access icon openaccess Survey of optimal motion planning

Loading full text...

Full text loading...

/deliver/fulltext/iet-csr/1/1/IET-CSR.2018.0003.html;jsessionid=23ph379eqlr98.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fiet-csr.2018.0003&mimeType=html&fmt=ahah

References

    1. 1)
      • 1. Litzenberger, G.: ‘Professional service robots: continued increase’, (Statistical Department, International Federation of Robotics, 2012. Available at: http://www.worldrobotics.org/index.php?id=home&news_id=262.
    2. 2)
      • 2. Lozano Perez, T., Jones, J.L., Mazer, E., et al: ‘HANDEY: a robot task planner’ (The MIT Press, Cambridge, 1992).
    3. 3)
      • 3. Latombe, J.C.: ‘Robot motion planning’ (Kluwer, Dordrecht, 1991).
    4. 4)
      • 4. Choset, H., Lynch, K.M., Hutchinson, S., et al: ‘Principles of robot motion: theory, algorithms, and implementations (intelligent robotics and autonomous agents)’ (The MIT Press, Cambridge, 2005).
    5. 5)
      • 5. LaVelle, S.M.: ‘Planning algorithms’ (Cambridge University Press, Cambridge, 2006).
    6. 6)
      • 6. Lumelsky, V.J., Stepanov, A.A.: ‘Path-planning strategies for a point mobile automaton moving amidst unknown obstacles of arbitrary shape’, Algorithmica, 1987, 2, (1), pp. 403430.
    7. 7)
      • 7. Simeon, T., Laumond, J.P., Nissoux, C.: ‘Visibility based probabilistic roadmaps for motion planning’, Adv. Robot., 2000, 14, (6), pp. 477493.
    8. 8)
      • 8. Reif, J.H.: ‘Complexity of the mover's problem and generalization’. Symp. on Foundations of Computer Science, San Juan, USA, 1979.
    9. 9)
      • 9. Brooks, R.A., Lozano.Perez, T.: ‘A subdivision algorithm in configuration space for findpath with rotation’, IEEE Trans. Syst., Man, Cybern., 1985, 2, pp. 224233.
    10. 10)
      • 10. Khatib, O.: ‘Real-time obstacle avoidance for manipulators and mobile robot’, Int. J. Robot. Res., 1988, 5, (1), pp. 9098.
    11. 11)
      • 11. Barraquand, J., Latombe, J.C.: ‘A monte-carlo algorithm for path planning with many degrees of freedom’. Int. Conf. on Robotics and Automation, Cincinnati, USA, 1990, pp. 17121717.
    12. 12)
      • 12. Kavraki, L., Svestka, P., Latombe, J.C., et al: ‘Probabilistic roadmaps for path planning in high-dimensional configuration spaces’, IEEE Trans. Robot. Autom., 1996, 12, pp. 566580.
    13. 13)
      • 13. Kuffner, J.J., LaValle, S.M.: ‘RRT-connect: An efficient approach to single-query path planning’. Int. Conf. on Robotics and Automation, San Francisco, USA, 2000, pp. 9951001.
    14. 14)
      • 14. Koyuncu, E., Ure, N.K., Inalhan, G.: ‘Integration of path/maneuver planning in complex environments for agile maneuvering ucavs’, J. Intell. Robot. Syst., 2010, 57, (1–4), pp. 143170.
    15. 15)
      • 15. Rickert, M., Sieverling, A., Brock, O.: ‘Balancing exploration and exploitation in sampling-based motion planning’, IEEE Trans. Robot., 2014, 30, (6), pp. 13051317.
    16. 16)
      • 16. Akbar Agha.mohammadi, A., Chakravorty, S., Amato, N.M.: ‘Firm: sampling-based feedback motion-planning under motion uncertainty and imperfect measurements’, Int. J. Robot. Res., 2014, 33, (2), pp. 268304.
    17. 17)
      • 17. Hsu, D., Kavraki, L.E., Latombe, J.C., et al: ‘On finding narrow passages with probabilistic roadmap planners’. Workshop on the Algorithmic Foundations of Robotics on Robotics, Houston, USA, 1998, pp. 141153.
    18. 18)
      • 18. Canny, J., Reif, J.: ‘New lower bound techniques for robot motion planning problems’. Annual Symp. on Foundations of Computer Science, Los Angeles, USA, 1987, pp. 4960.
    19. 19)
      • 19. Canny, J., Reg, A., Reif, J.: ‘An exact algorithm for kinodynamic planning in the plane’, Discrete Comput. Geom., 1991, 6, pp. 461484.
    20. 20)
      • 20. LaValle, S.M., James, J., Kuffner, J.: ‘Randomized kinodynamic planning’, Int. J. Robot. Res., 2001, 20, (5), pp. 378400.
    21. 21)
      • 21. Cohen, B.J., Chitta, S., Likhachev, M.: ‘Search-based planning for manipulation with motion primitives’. Int. Conf. on Robotics and Automation, Anchorage, USA, 2010, pp. 29022908.
    22. 22)
      • 22. Cohen, B.J., Subramania, G., Chitta, S., et al: ‘Planning for manipulation with adaptive motion primitives’. Int. Conf. on Robotics and Automation, Shanghai, China, 2011, pp. 54785485.
    23. 23)
      • 23. Cohen, B., Chitta, S., Likhachev, M.: ‘Single- and dual-arm motion planning with heuristic search’, Int. J. Robot. Res., 2014, 33, (2), pp. 305320.
    24. 24)
      • 24. Phillips, M., Likhachev, M.: ‘Speeding up heuristic computation in planning with experience graphs’. Int. Conf. on Robotics and Automation, Seattle, USA, 2015, pp. 893899.
    25. 25)
      • 25. Phillips, M., Cohen, B.J., Chitta, S., et al: ‘E-graphs: bootstrapping planning with experience graphs’. Robotics: Science and Systems, Sydney, Australia, July 2012.
    26. 26)
      • 26. Phillips, M., Dornbush, A., Chitta, S., et al: ‘Anytime incremental planning with e-graphs’. Int. Conf. on Robotics and Automation, Karlsruhe, Germany, 2013, pp. 24442451.
    27. 27)
      • 27. Likhachev, M., Gordon, G., Thrun, S.: ‘ARA*: anytime A* with provable bounds on sub-optimality’. Advances in Neural Information Processing, Vancouver, Canada, December 2003.
    28. 28)
      • 28. Likhachev, M., Ferguson, D., Gordon, G., et al: ‘Anytime search in dynamic graphs’, Artif. Intell., 2008, 172, (14), pp. 16131643.
    29. 29)
      • 29. Stentz, A.: ‘The focussed D* algorithm for real-time replanning’. Int. Joint Conf. on Artificial Intelligence, Montreal, Canada, 1995, pp. 16521659.
    30. 30)
      • 30. Likhachev, M., Ferguson, D.: ‘Planning long dynamically feasible maneuvers for autonomous vehicles’, Int. J. Robot. Res., 2009, 28, (8), pp. 933945.
    31. 31)
      • 31. Urmson, C., Simmons, R.: ‘Approaches for heuristically biasing rrt growth’. Int. Conf. on Intelligent Robots and Systems, Las Vegas, USA, 2003, Vol. 2, pp. 11781183.
    32. 32)
      • 32. Karaman, S., Frazzoli, E.: ‘Sampling-based algorithms for optimal motion planning’, Int. J. Robot. Res., 2011, 30, (7), pp. 846894.
    33. 33)
      • 33. Karaman, S., Walter, M.R., Perez, A., et al: ‘Anytime motion planning using the rrt*’. Int. Conf. on Robotics and Automation, Shanghai, China, 2011, pp. 14781483.
    34. 34)
      • 34. Karaman, S., Frazzoli, E.: ‘Incremental sampling-based algorithms for optimal motion planning’, Int. J. Robotics Res., 2011, 30, (7).
    35. 35)
      • 35. Alterovitz, R., Patil, S., Derbakova, A.: ‘Rapidly-exploring roadmaps: weighing exploration vs. Refinement in optimal motion planning’. Int. Conf. on Robotics and Automation, Shanghai, China, 2011, pp. 37063712.
    36. 36)
      • 36. Gammell, J.D., Srinivasa, S.S., Barfoot, T.D.: ‘Informed RRT*: optimal sampling-based path planning focused via direct sampling of an admissible ellipsoidal heuristic’. Int. Conf. on Intelligent Robots and Systems, Chicago, USA, 2014, pp. 29973004.
    37. 37)
      • 37. Marble, J.D., Bekris, K.E.: ‘Asymptotically near-optimal planning with probabilistic roadmap spanners’, IEEE Trans. Robot., 2013, 29, (2), pp. 432444.
    38. 38)
      • 38. Li, Y., Littlefield, Z., Bekris, K.E.: ‘Asymptotically optimal sampling-based kinodynamic planning’, Int. J. Robot. Res., 2016, 35, pp. 528564.
    39. 39)
      • 39. Dobson, A., Bekris, K.E.: ‘Sparse roadmap spanners for asymptotically near-optimal motion planning’, Int. J. Robot. Res., 2014, 33, (1), pp. 1847.
    40. 40)
      • 40. Shaharabani, D., Salzman, O., Agarwal, P.K., et al: ‘Sparsification of motion-planning roadmaps by edge contraction’. Int. Conf. on Robotics and Automation, Karlsruhe, Germany, 2013, pp. 40984105.
    41. 41)
      • 41. Wang, W., Balkcom, D., Chakrabarti, A.: ‘A fast streaming spanner algorithm for incrementally constructing sparse roadmaps’. Int. Conf. on Intelligent Robots and Systems, Tokyo, Japan, 2013, pp. 12571263.
    42. 42)
      • 42. Ratliff, N., Zucker, M., Bagnell, J.A., et al: ‘Chomp: gradient optimization techniques for efficient motion planning’. Int. Conf. on Robotics and Automation, Kobe, Japan, 2009, pp. 489494.
    43. 43)
      • 43. Kalakrishnan, M., Chitta, S., Theodorou, E., et al: ‘STOMP: stochastic trajectory optimization for motion planning’. Int. Conf. on Robotics and Automation, Shanghai, China, 2011, pp. 45694574.
    44. 44)
      • 44. Schulman, J., Duan, Y., Ho, J., et al: ‘Motion planning with sequential convex optimization and convex collision checking’, Int. J. Robot. Res., 2014, 33, (9), pp. 12511270.
    45. 45)
      • 45. Lengagne, S., Vaillant, J., Yoshida, E., et al: ‘Generation of whole-body optimal dynamic multi-contact motions’, Int. J. Robot. Res., 2013, 32, (9–10), pp. 11041119.
    46. 46)
      • 46. Escande, A., Mansard, N., Wieber, P.B.: ‘Hierarchical quadratic programming: fast online humanoid-robot motion generation’, Int. J. Robot. Res., 2014, 33, (7), pp. 10061028.
    47. 47)
      • 47. Jacobson, D.H., Mayne, D.Q.: ‘Differential dynamic programming’ (Elsevier, Amsterdam, 1970).
    48. 48)
      • 48. Atkeson, C.G.: ‘Using local trajectory optimizers to speed up global optimization in dynamic programming’. Advances in Neural Information Processing Systems, Denver, USA, 1994, pp. 663670.
    49. 49)
      • 49. Todorov, E., Li, W.: ‘A generalized iterative LQG method for locally-optimal feedback control of constrained nonlinear stochastic systems’. American Control Conf., Portland, USA, 2005, Vol. 1, pp. 300306.
    50. 50)
      • 50. Toussaint, M.: ‘Robot trajectory optimization using approximate inference’. Int. Conf. on Machine Learning, Montreal, Canada, 2009, pp. 10491056.
    51. 51)
      • 51. Mordatch, I., Todorov, E., Popović, Z.: ‘Discovery of complex behaviors through contact-invariant optimization’, ACM Trans. Graph., 2012, 31, (4), pp. 43:143:8.
    52. 52)
      • 52. Tassa, Y., Erez, T., Todorov, E.: ‘Synthesis and stabilization of complex behaviors through online trajectory optimization’. Int. Conf. on Intelligent Robots and Systems, Vilamoura, Portugal, 2012, pp. 49064913.
    53. 53)
      • 53. Erez, T., Todorov, E.: ‘Trajectory optimization for domains with contacts using inverse dynamics’. Int. Conf. on Intelligent Robots and Systems, Vilamoura, Portugal, 2012, pp. 49144919.
    54. 54)
      • 54. Posa, M., Tedrake, R.: ‘Direct trajectory optimization of rigid body dynamical systems through contact’. Algorithmic Foundations of Robotics, 2013, pp. 527542.
    55. 55)
      • 55. Dong, J., Mukadam, M., Dellaert, F., et al: ‘Motion planning as probabilistic inference using Gaussian processes and factor graphs’, ‘Robotics: Science and Systems’ (Ann Arbor, USA, 2016).
    56. 56)
      • 56. Dragan, A., Gordon, G., Srinivasa, S.: ‘Learning from experience in manipulation planning: setting the right goals’. Int. Symp. on Robotics Research, Flagstaff, USA, 2011.
    57. 57)
      • 57. Berenson, D., Srinivasa, S., Kuffner, J.: ‘Task space regions: a framework for poseconstrained manipulation planning’, Int. J. Robot. Res., 2011, 30, (12), pp. 14351460.
    58. 58)
      • 58. Laumond, J.P.: ‘Trajectories for mobile robots with kinematic and environment constraints’. Int. Conf. on Intelligent Autonomous Systems, Amsterdam, The Netherlands, 1986, pp. 346354.
    59. 59)
      • 59. Donald, B.R., Xavier, P.G., Canny, J., et al: ‘Kinodynamic planning’, J. ACM, 1993, 40, pp. 10481066.
    60. 60)
      • 60. Murray, R.M., Sastry, S.: ‘Nonholonomic motion planning: steering using sinusoids’, IEEE Trans. Autom. Control, 1993, 38, pp. 700716.
    61. 61)
      • 61. Frazzoli, E.: ‘Robust hybrid control of autonomous vehicle motion planning’, PhD Thesis, Massachusetts Institute of Technology, 2001.
    62. 62)
      • 62. Lamiraux, F., Ferre, E., Vallee, E.: ‘Kinodynamic motion planning: connecting exploration trees using trajectory optimization methods’. Int. Conf. on Robotics and Automation, New Orleans, USA, 2004, pp. 39873992.
    63. 63)
      • 63. Hsu, D., Kindel, R., Latombe, J.C., et al: ‘Randomized kinodynamic motion planning with moving obstacles’, Int. J. Robot. Res., 2002, 21, (3), pp. 233255.
    64. 64)
      • 64. Morinaga, A., Svinin, M., Yamamoto, M.: ‘Motion planning of drifting vehicle with friction model considering nonholonomic constraint’. Int. Conf. on Robotics and Automation, Seattle, USA, 2015, pp. 650655.
    65. 65)
      • 65. Richards, A., How, J.P.: ‘Aircraft trajectory planning with collision avoidance using mixed integer linear programming’. American Control Conf., Anchorage, USA, 2002, vol. 3, pp. 19361941.
    66. 66)
      • 66. Landry, B., Deits, R., Florence, P.R., et al: ‘Aggressive quadrotor flight through cluttered environments using mixed integer programming’. Int. Conf. on Robotics and Automation, Stockholm, Sweden, 2016, pp. 14691475.
    67. 67)
      • 67. Barry, A.J., Majumdar, A., Tedrake, R.: ‘Safety verification of reactive controllers for uav flight in cluttered environments using barrier certificates’. Int. Conf. on Robotics and Automation, Saint Paul, USA, 2012, pp. 484490.
    68. 68)
      • 68. Feng, S., Whitman, E., Xinjilefu, X., et al: ‘Optimization-based full body control for the darpa robotics challenge’, J. Field Robot., 2015, 32, (2), pp. 293312.
    69. 69)
      • 69. Dai, H., Tedrake, R.: ‘Planning robust walking motion on uneven terrain via convex optimization’. Int. Conf. on Humanoid Robots, Cancun, Mexico, 2016, pp. 579586.
    70. 70)
      • 70. Marchese, A.D., Tedrake, R., Rus, D.: ‘Dynamics and trajectory optimization for a soft spatial fluidic elastomer manipulator’, Int. J. Robot. Res., 2016, 35, (8), pp. 10001019.
    71. 71)
      • 71. Amato, N.M., Bayazit, O.B., Dale, L.K., et al: ‘OBPRM: an obstacle-based prm for 3D workspaces’. Workshop on the Algorithmic Foundations of Robotics on Robotics, 1998, pp. 155168.
    72. 72)
      • 72. Boor, V., Overmars, M.H., van der Stappen, A.F.: ‘The Gaussian sampling strategy for probabilistic roadmap planners’. Int. Conf. on Robotics and Automation, Detroit, USA, 1999, pp. 10181023.
    73. 73)
      • 73. Rodriguez, S., Tang, X., Lien, J.M., et al: ‘An obstacle-based rapidly-exploring random tree’. Int. Conf. on Robotics and Automation, Orlando, USA, 2006, pp. 895900.
    74. 74)
      • 74. Sun, Z., Hsu, D., Jiang, T., et al: ‘Narrow passage sampling for probabilistic roadmap planners’, IEEE Trans. Robot., 2005, 21, (6), pp. 11051115.
    75. 75)
      • 75. Jaillet, L., Yershova, A., La Valle, S.M., et al: ‘Adaptive tuning of the sampling domain for dynamic-domain RRTs’. Int. Conf. on Intelligent Robots and Systems, Edmonton, Canada, 2005, pp. 28512856.
    76. 76)
      • 76. Yershova, A., Jaillet, L., Simeon, T., et al: ‘Dynamic-domain RRTs: efficient exploration by controlling the sampling domain’. Int. Conf. on Robotics and Automation, 2005, pp. 38563861.
    77. 77)
      • 77. Burns, B., Brock, O.: ‘Toward optimal configuration space sampling’, ‘Robotics: Science and Systems’ (Cambridge, USA, 2005).
    78. 78)
      • 78. Knepper, R.A., Mason, M.T.: ‘Real-time informed path sampling for motion planning search’, Int. J. Robot. Res., 2012, 31, (11), pp. 12311250.
    79. 79)
      • 79. Denny, J., Amato, N.M.: ‘Toggle PRM: simultaneous mapping of c-free and c-obstacle - a study in 2D’. Int. Conf. on Intelligent Robots and Systems, San Francisco, USA, 2011, pp. 26322639.
    80. 80)
      • 80. Luna, R., Şucan, I.A., Moll, M., et al: ‘Anytime solution optimization for sampling-based motion planning’. Int. Conf. on Robotics and Automation, Karlsruhe, Germany, 2013, pp. 50685074.
    81. 81)
      • 81. Luo, J., Hauser, K.: ‘An empirical study of optimal motion planning’. Int. Conf. on Intelligent Robots and Systems, Chicago, USA, 2014, pp. 17611768.
    82. 82)
      • 82. Jetchev, N., Toussaint, M.: ‘Trajectory prediction in cluttered voxel environments’. Int. Conf. on Robotics and Automation, Anchorage, USA, 2010, pp. 25232528.
    83. 83)
      • 83. Kant, K., Zucker, S.W.: ‘Toward efficient trajectory planning: the path velocity decomposition’, Int. J. Robot. Res., 1986, 5, pp. 7289.
    84. 84)
      • 84. LaValle, S.M., Hutchinson, S.A.: ‘Optimal motion planning for multiple robots having independent goals’, IEEE Trans. Robot. Autom., 1998, 14, pp. 912925.
    85. 85)
      • 85. van den Berg, J., Overmars, M.: ‘Prioritized motion planning for multiple robots’. Int. Conf. on Intelligent Robots and Systems, Edmonton, Canada, 2005, pp. 22172222.
    86. 86)
      • 86. Bobrow, J.E., Dubowsky, S., Gibson, J.S.: ‘Time-optimal control of robotic manipulators along specified paths’, Int. J. Robot. Res., 1985, 4, (3), pp. 317.
    87. 87)
      • 87. Pham, Q.C.: ‘A general, fast, and robust implementation of the time-optimal path parameterization algorithm’, IEEE Trans. Robot., 2014, 30, (6), pp. 15331540.
    88. 88)
      • 88. Constantinescu, D., Croft, E.A.: ‘Smooth and time-optimal trajectory planning for industrial manipulators along specified paths’, J. Robot. Syst., 2000, 17, (5), pp. 233249.
    89. 89)
      • 89. Verscheure, D., Demeulenaere, B., Swevers, J., et al: ‘Time-optimal path tracking for robots: A convex optimization approach’, IEEE Trans. Autom. Control, 2009, 54, (10), pp. 23182327.
    90. 90)
      • 90. Homsi, S.A., Sherikov, A., Dimitrov, D., et al: ‘A hierarchical approach to minimum-time control of industrial robots’. Int. Conf. on Robotics and Automation, Stockholm, Sweden, 2016, pp. 23682374.
    91. 91)
      • 91. Shiller, Z., Dubowsky, S.: ‘On computing the global time-optimal motions of robotic manipulators in the presence of obstacles’, IEEE Trans. Robot. Autom., 1991, 7, (6), pp. 785797.
    92. 92)
      • 92. Yamamoto, M., Iwamura, M., Mohri, A.: ‘Quasi-time-optimal motion planning of mobile platforms in the presence of obstacles’. Int. Conf. on Robotics and Automation, Detroit, USA, 1999, vol. 4, pp. 29582963.
    93. 93)
      • 93. Otte, M., Frazzoli, E.: ‘RRTX: asymptotically optimal single-query sampling-based motion planning with quick replanning’, Int. J. Robot. Res., 2016, 35, (7), pp. 797822.
    94. 94)
      • 94. Macfarlane, S., Croft, E.A.: ‘Jerk-bounded manipulator trajectory planning: design for real-time applications’, IEEE Trans. Robot. Autom., 2003, 19, (1), pp. 4252.
    95. 95)
      • 95. Bobrow, J.E., Martin, B., Sohl, G., et al: ‘Optimal robot motions for physical criteria’, J. Robot. Syst., 2001, 18, (12), pp. 785795.
    96. 96)
      • 96. Lee, S.H., Kim, J., Park, F.C., et al: ‘Newton-type algorithms for dynamics-based robot movement optimization’, IEEE Trans. Robot., 2005, 21, (4), pp. 657667.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-csr.2018.0003
Loading

Related content

content/journals/10.1049/iet-csr.2018.0003
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address