http://iet.metastore.ingenta.com
1887

access icon openaccess Visual inference of flow flux via free surface PDE model and image sequence assimilation

Loading full text...

Full text loading...

/deliver/fulltext/iet-csr/1/1/IET-CSR.2018.0002.html;jsessionid=1qjz6cw1xmecn.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fiet-csr.2018.0002&mimeType=html&fmt=ahah

References

    1. 1)
      • 1. Wang, Z., Li, H.: ‘Incremental spatiotemporal learning for online modeling of distributed parameter systems’, IEEE Trans. Syst. Man Cybern. Syst., 2018, doi: 10.1109/TSMC.2018.2810447, to appear.
    2. 2)
      • 2. Ren, Z., Guo, S., Li, Z., et al: ‘Adjoint-based parameter and state estimation in 1-D magnetohydrodynamic (MHD) flow system’, J. Ind. Manage. Optim., 2018, 14, (4), pp. 15791594.
    3. 3)
      • 3. Wang, J., Li, H., Wu, H.: ‘A membership-function-dependent approach to design fuzzy pointwise state feedback controller for nonlinear parabolic distributed parameter systems with spatially discrete actuators’, IEEE Trans. Syst. Man Cybern. Syst., 2017, 47, (7), pp. 14861499.
    4. 4)
      • 4. Ren, Z., Xu, C., Zhou, Z., et al: ‘Boundary stabilization of a class of reaction-advection-diffusion systems via a gradient-based optimization approach’, J. Franklin Inst., 2019, 356, (1), pp. 173195.
    5. 5)
      • 5. Krstic, M., Vazquez, R., Siranosian, A., et al: ‘Sensing schemes for state estimation in turbulent flows and flexible structures’. Proc. SPIE, Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems, 2006, vol. 6174, p. 61740U.
    6. 6)
      • 6. Bennett, A.: ‘Inverse modeling of the ocean and atmosphere’ (Cambridge University Press, Cambridge, 2005).
    7. 7)
      • 7. Huang, D., Chernyshenko, S., Goulart, P., et al: ‘Sum-of-squares of polynomials approach to nonlinear stability of fluid flows’, Proc. R. Soc. A, 2015, 471, pp. 118.
    8. 8)
      • 8. Meselhe, E.A., Peeva, T., Muste, M.: ‘Large scale particle image velocimetry for low velocity and shallow water flows’, J. Hydraul. Eng., 2004, 130, (9), pp. 937940.
    9. 9)
      • 9. Detert, M., Weitbrecht, V.: ‘A low-cost airborne velocimetry system: proof of concept’, J. Hydraul. Res., 2015, 53, (4), pp. 532539.
    10. 10)
      • 10. Combes, B., Heitz, D., Guibert, A., et al: ‘A particle filter to reconstruct a free-surface flow from a depth camera’, Fluid Dyn. Res., 2015, 47, (5), p. 051404.
    11. 11)
      • 11. Cuzol, A., Memin, E.: ‘A stochastic filtering technique for fluid flows velocity fields tracking’, IEEE Trans. Pattern Anal. Mach. Intell., 2009, 31, (7), pp. 12781293.
    12. 12)
      • 12. Adrian, R.J.: ‘Twenty years of particle image velocimetry’, Exp. Fluids, 2005, 39, (2), pp. 159169.
    13. 13)
      • 13. Cai, S., Huang, Y., Ye, B., et al: ‘Dynamic illumination optical flow computing for sensing multiple mobile robots from a drone’, IEEE Trans. Syst. Man Cybern., Syst., 2018, 48, (8), pp. 13701382.
    14. 14)
      • 14. Horn, B., Schunck, B.: ‘Determining optical flow’, Artif. Intell., 1981, 17, (1–3), pp. 185203.
    15. 15)
      • 15. Bruhn, A., Weickert, J., Schnorr, C.: ‘Lucas/Kanade meets Horn/Schunck: combining local and global optic flow methods’, Int. J. Comput. Vis., 2005, 61, (3), pp. 211231.
    16. 16)
      • 16. Borzi, A., Ito, K., Kunisch, K.: ‘An optimal control approach to optical flow computation’, Int. J. Numer. Methods Fluids, 2002, 40, (1–2), pp. 231240.
    17. 17)
      • 17. Chen, X., Zille, P., Shao, L., et al: ‘Optical flow for incompressible turbulence motion estimation’, Exp. Fluids, 2015, 56, (1), p. 8.
    18. 18)
      • 18. Cai, S., Memin, E., Derian, P., et al: ‘Motion estimation under location uncertainty for turbulent fluid flows’, Exp. Fluids, 2018, 59, (1), p. 8.
    19. 19)
      • 19. Heitz, D., Memin, E., Schnorr, C.: ‘Variational fluid flow measurements from image sequences: synopsis and perspectives’, Exp. Fluids, 2010, 48, pp. 369393.
    20. 20)
      • 20. Corpetti, T., Memin, E.: ‘Stochastic uncertainty models for the luminance consistency assumption’, IEEE Trans. Image Process., 2012, 21, (2), pp. 481493.
    21. 21)
      • 21. Shimojo, S., Silverman, G., Nakayama, K.: ‘Occlusion and the solution to the aperture problem for motion’, Vis. Res., 1989, 29, (5), pp. 619626.
    22. 22)
      • 22. Evensen, G.: ‘Introduction’ in Evensen, G. (Ed.): ‘Data assimilation’ (Springer, Berlin, Heidelberg, 2009), pp. 14.
    23. 23)
      • 23. Lai, X., Monnier, J.: ‘Assimilation of spatially distributed water levels into a shallow-water flood model. Part 1: mathematical method and test case’, J. Hydrol., 2009, 377, pp. 111.
    24. 24)
      • 24. Hostache, R., Lai, X., Monnier, J., et al: ‘Assimilation of spatially distributed water levels into a shallow-water flood model. Part II: use of a remote sensing image of Mosel River’, J. Hydrol., 2010, 390, pp. 257268.
    25. 25)
      • 25. Wu, Q., Tinka, A., Weekly, K., et al: ‘Variational Lagrangian data assimilation in open channel networks’, Water Resour. Res., 2015, 51, (4), pp. 19161938.
    26. 26)
      • 26. Barbu, V., Marinoschi, G.: ‘An optimal control approach to the optical flow problem’, Syst. Control Lett., 2016, 87, pp. 19.
    27. 27)
      • 27. Beyou, S., Corpetti, T., Gorthi, S., et al: ‘Fluid flow estimation with multiscale ensemble filters based on motion measurements under location uncertainty’, Numer. Math. Theory Methods Appl., 2013, 6, (1), pp. 2126.
    28. 28)
      • 28. Le Dimet, F.X., Talagrand, O.: ‘Variational algorithms for analysis and assimilation of meteorological observations: theoretical aspects’, Dyn. Meteorol. Oceanogr., 1986, 38, (2), pp. 97110.
    29. 29)
      • 29. Evensen, G.: ‘Data assimilation: the ensemble Kalman filter’ (Springer Science & Business Media, Berlin, 2009).
    30. 30)
      • 30. Wang, Y., Cheng, Y., Navon, I.M., et al: ‘Parameter identification techniques applied to an environmental pollution model’, J. Ind. Manage. Optim., 2018, 14, (2), pp. 817831.
    31. 31)
      • 31. Stuart, A.M.: ‘Inverse problems: a Bayesian perspective’, Acta Numer., 2010, 19, pp. 451559.
    32. 32)
      • 32. Arulampalam, M.S., Maskell, S., Gordan, N., et al: ‘A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking’, IEEE Trans. Signal Process., 2002, 59, (2), pp. 174188.
    33. 33)
      • 33. Anderson, J.D., Wendt, J.: ‘Computational fluid dynamics’ (McGraw-Hill, New York, 1995).
    34. 34)
      • 34. Bradford, S.F., Sanders, B.F.: ‘Finite-volume model for shallow-water flooding of arbitrary topography’, J. Hydraul. Eng., 2002, 128, (3), pp. 289298.
    35. 35)
      • 35. Chen, S., Doolen, G.D.: ‘Lattice Boltzmann method for fluid flows’, Annu. Rev. Fluid Mech., 1998, 30, (1), pp. 329364.
    36. 36)
      • 36. Zhou, J.: ‘A lattice Boltzmann model for the shallow water equations’, Comput. Methods Appl. Mech. Eng., 2002, 191, (32), pp. 35273539.
    37. 37)
      • 37. Zhang, H., Feng, G., Yan, H., et al: ‘Observer-based output feedback event-triggered control for consensus of multi-agent systems’, IEEE Trans. Ind. Electron., 2014, 61, (9), pp. 48854894.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-csr.2018.0002
Loading

Related content

content/journals/10.1049/iet-csr.2018.0002
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address