Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon openaccess Wyner wiretap-like encoding scheme for cyber-physical systems

In this study, the authors consider the problem of exchanging secrete messages in cyber-physical systems (CPSs) without resorting to cryptographic solutions. In particular, they consider a CPS where the networked controller wants to send a secrete message to the plant. They show that such a problem can be solved by exploiting a Wyner wiretap-like encoding scheme taking advantage of the closed-loop operations typical of feedback control systems. Specifically, by resorting to the control concept of one-step reachable sets, they first show that a wiretap-like encoding scheme exists whenever there is an asymmetry in the plant model knowledge available to control system (the defender) and to the eavesdropper. The effectiveness of the proposed scheme is confirmed by means of a numerical example. Finally, they conclude the study by presenting open design challenges that can be addressed by the research community to improve, in different directions, the secrete message exchange problem in CPSs.

References

    1. 1)
      • 49. Herceg, M., Kvasnica, M., Jones, C.N., et al: ‘Multi-parametric toolbox 3.0’. 2013 European control Conf. (ECC), Zurich, Switzerland, 2013, pp. 502510.
    2. 2)
      • 2. Lyu, X., Ding, Y., Yang, S.H.: ‘Safety and security risk assessment in cyberphysical systems’, IET Cyber-Phys. Syst., Theory Appl., 2019, 4, (3), pp. 221232.
    3. 3)
      • 6. Sandberg, H., Amin, S., Johansson, K.H.: ‘Cyberphysical security in networked control systems: an introduction to the issue’, IEEE Control Syst. Mag., 2015, 35, (1), pp. 2023.
    4. 4)
      • 33. Herzberg, A., Kfir, Y.: ‘The chatty-sensor: a provably-covert channel in cyber physical systems’. Proc. of the 35th Annual Computer Security Applications Conf., 2019, pp. 638649.
    5. 5)
      • 25. Burg, A., Chattopadhyay, A., Lam, K.Y.: ‘Wireless communication and security issues for cyber–physical systems and the internet-of-things’, Proc. IEEE, 2017, 106, (1), pp. 3860.
    6. 6)
      • 38. Ljung, L.: ‘System identification’, ‘Wiley Encyclopedia of Electrical and Electronics Engineering’ (Prentice Hall, New Jersey, USA, 1999), pp. 119.
    7. 7)
      • 37. Nelles, O.: ‘Nonlinear system identification: from classical approaches to neural networks and fuzzy models’ (Springer Science & Business Media, Berlin, Germany, 2013).
    8. 8)
      • 19. Van Oorschot, P.C., Menezes, A.J., Vanstone, S.A.: ‘Handbook of applied cryptography’ (CRC Press, Florida, USA, 1996).
    9. 9)
      • 4. Qi, J., Hahn, A., Lu, X., et al: ‘Cybersecurity for distributed energy resources and smart inverters’, IET Cyber-Phys. Syst., Theory Appl., 2016, 1, (1), pp. 2839.
    10. 10)
      • 41. Lin, H., Antsaklis, P.J.: ‘Stability and stabilizability of switched linear systems: a survey of recent results’, IEEE Trans. Autom. Control, 2009, 54, (2), pp. 308322.
    11. 11)
      • 12. Wang, J., Constante, G., Moya, C., et al: ‘Semantic analysis framework for protecting the power grid against monitoring-control attacks’, IET Cyber-Phys. Syst., Theory Appl., 2020, 5, (1), pp. 119126.
    12. 12)
      • 47. Boyd, S., Boyd, S.P., Vandenberghe, L.: ‘Convex optimization’ (Cambridge University Press, UK, 2004).
    13. 13)
      • 42. Angeli, D., Casavola, A., Franzè, G., et al: ‘An ellipsoidal off-line mpc scheme for uncertain polytopic discrete-time systems’, Automatica, 2008, 44, (12), pp. 31133119.
    14. 14)
      • 14. Weerakkody, S., Sinopoli, B.: ‘Detecting integrity attacks on control systems using a moving target approach’. IEEE Conf on Decision and Control (CDC), Osaka, Japan, 2015, pp. 58205826.
    15. 15)
      • 46. Fogel, E., Halperin, D.: ‘Exact and efficient construction of minkowski sums of convex polyhedra with applications’, Comput.-Aided Des., 2007, 39, (11), pp. 929940.
    16. 16)
      • 23. Bloch, M., Barros, J.: ‘Physical-layer security: from information theory to security engineering’ (Cambridge University Press, 2011).
    17. 17)
      • 34. Ying, X., Bernieri, G., Conti, M., et al: ‘Tacan: transmitter authentication through covert channels in controller area networks’. Proc. of the 10th ACM IEEE Int. Conf. on Cyber-Physical Systems. ICCPS âĂŹ19, New York, NY, USA: Association for Computing Machinery, 2019, pp. 2334.
    18. 18)
      • 44. Fukuda, K.: ‘From the zonotope construction to the minkowski addition of convex polytopes’, J. Symb. Comput., 2004, 38, (4), pp. 12611272.
    19. 19)
      • 18. Griffioen, P., Weerakkody, S., Sinopoli, B.: ‘An optimal design of a moving target defense for attack detection in control systems’. American Control Conf. (ACC), Philadelphia, PA, USA, 2019, pp. 45274534.
    20. 20)
      • 1. Greer, C., Burns, M., Wollman, D., et al: ‘Cyber-physical systems and internet of things’, NIST Spec. Publ., 1900, 202, (2019), p. 52.
    21. 21)
      • 24. Csiszár, I., Korner, J.: ‘Broadcast channels with confidential messages’, IEEE Trans. Inf. Theory, 1978, 24, (3), pp. 339348.
    22. 22)
      • 17. Ghaderi, M., Gheitasi, K., Lucia, W.: ‘A novel control architecture for the detection of false data injection attacks in networked control systems’. American Control Conf. (ACC), Philadelphia, PA, USA, 2019, pp. 139144.
    23. 23)
      • 35. Borrelli, F., Bemporad, A., Morari, M.: ‘Predictive control for linear and hybrid systems’ (Cambridge University Press, Cambridge, UK, 2017).
    24. 24)
      • 3. He, H., Yan, J.: ‘Cyber-physical attacks and defences in the smart grid: a survey’, IET Cyber-Phys. Syst., Theory Appl., 2016, 1, (1), pp. 1327.
    25. 25)
      • 22. Cover, T.M., Thomas, J.A.: ‘Elements of information theory’ (JohnWiley & Sons, New York, USA, 1991).
    26. 26)
      • 26. Atat, R., Liu, L., Chen, H., et al: ‘Enabling cyber-physical communication in 5 g cellular networks: challenges, spatial spectrum sensing, and cyber-security’, IET Cyber-Phys. Syst., Theory Appl., 2017, 2, (1), pp. 4954.
    27. 27)
      • 5. Cardenas, A., Amin, S., Sinopoli, B., et al: ‘Challenges for securing cyber physical systems’. Workshop on Future Directions in Cyber-Physical Systems Security, vol. 5, 2009.
    28. 28)
      • 45. Gritzmann, P., Sturmfels, B.: ‘Minkowski addition of polytopes: computational complexity and applications to gröbner bases’, SIAM J. Discrete Math., 1993, 6, (2), pp. 246269.
    29. 29)
      • 30. Krishnamurthy, P., Khorrami, F., Karri, R., et al: ‘Process-aware covert channels using physical instrumentation in cyber-physical systems’, IEEE Trans. Inf. Forensics Sec., 2018, 13, (11), pp. 27612771.
    30. 30)
      • 11. Li, Y., Huo, W., Qiu, R., et al: ‘Efficient detection of false data injection attack with invertible automatic encoder and long-short-term memory’, IET Cyber-Phys. Syst., Theory Appl., 2020, 5, (1), pp. 110118.
    31. 31)
      • 40. Branicky, M.S.: ‘Multiple lyapunov functions and other analysis tools for switched and hybrid systems’, IEEE Trans. Autom. Control, 1998, 43, (4), pp. 475482.
    32. 32)
      • 43. Agarwal, P.K., Flato, E., Halperin, D.: ‘Polygon decomposition for efficient construction of minkowski sums’, Comput. Geom., 2002, 21, (1–2), pp. 3961.
    33. 33)
      • 29. Zander, S., Armitage, G., Branch, P.: ‘Covert channels and countermeasures in computer network protocols [reprinted from ieee communications surveys and tutorials]’, IEEE Commun. Mag., 2007, 45, (12), pp. 136142.
    34. 34)
      • 16. Miao, F., Zhu, Q., Pajic, M., et al: ‘Coding schemes for securing cyberphysical systems against stealthy data injection attacks’, IEEE Trans. Control Netw. Syst., 2016, 4, (1), pp. 106117.
    35. 35)
      • 39. Liberzon, D., Morse, A.S.: ‘Basic problems in stability and design of switched systems’, IEEE Control Syst. Mag., 1999, 19, (5), pp. 5970.
    36. 36)
      • 21. Wyner, A.D.: ‘The wire-tap channel’, Bell Syst. Tech. J., 1975, 54, (8), pp. 13551387.
    37. 37)
      • 8. Wang, Q., Tai, W., Tang, Y., et al: ‘Review of the false data injection attack against the cyber-physical power system’, IET Cyber-Phys. Syst., Theory Appl., 2019, 4, (2), pp. 101107.
    38. 38)
      • 7. Liu, Y., Ning, P., Reiter, M.K.: ‘False data injection attacks against state estimation in electric power grids’, ACM Trans. Inf. Syst. Security (TISSEC), 2011, 14, (1), pp. 133.
    39. 39)
      • 48. Adler, I., Shamir, R.: ‘A randomized scheme for speeding up algorithms for linear and convex programming problems with high constraints-to-variables ratio’, Math. Program., 1993, 61, (1–3), pp. 3952.
    40. 40)
      • 9. Ayad, A., Farag, H., Youssef, A., et al: ‘Cyber-physical attacks on power distribution systems’, IET Cyber-Phys. Syst., Theory Appl., 2020, 5, (2), pp. 218225.
    41. 41)
      • 20. Mahmoud, M.M., Mišić, J., Akkaya, K., et al: ‘Investigating public-key certificate revocation in smart grid’, IEEE Internet Things J., 2015, 2, (6), pp. 490503.
    42. 42)
      • 50. Rakovic, S.V., Kerrigan, E.C., Kouramas, K.I., et al: ‘Invariant approximations of the minimal robust positively invariant set’, IEEE Trans. Autom. Control, 2005, 50, (3), pp. 406410.
    43. 43)
      • 13. Smith, R.S.: ‘Covert misappropriation of networked control systems: presenting a feedback structure’, IEEE Control Syst., 2015, 35, (1), pp. 8292.
    44. 44)
      • 27. Rawat, D.B., White, T., Parwez, M.S., et al: ‘Evaluating secrecy outage of physical layer security in large-scale mimo wireless communications for cyber-physical systems’, IEEE Internet Things J., 2017, 4, (6), pp. 19871993.
    45. 45)
      • 10. Nikmehr, N., Moghadam, S.M.: ‘Game-theoretic cybersecurity analysis for false data injection attack on networked microgrids’, IET Cyber-Phys. Syst., Theory Appl., 2019, 4, (4), pp. 365373.
    46. 46)
      • 28. Millen, J.K.: ‘Covert channel capacity’. 1987 IEEE Symp. on Security and Privacy, Oakland, CA, USA, 1987, pp. 6060.
    47. 47)
      • 32. Herzberg, A., Kfir, Y.: ‘The leaky actuator: a provably-covert channel in cyber physical systems’. Proc. of the ACM Workshop on Cyber-Physical Systems Security & Privacy, 2019, pp. 8798.
    48. 48)
      • 15. Schellenberger, C., Zhang, P.: ‘Detection of covert attacks on cyberphysical systems by extending the system dynamics with an auxiliary system’. IEEE Conf on Decision and Control (CDC), Melbourne, VIC, Australia, 2017, pp. 13741379.
    49. 49)
      • 36. Blanchini, F., Miani, S.: ‘Set-theoretic methods in control’ (Springer, Switzerland, 2008).
    50. 50)
      • 31. Garcia, L., Senyondo, H., McLaughlin, S., et al: ‘Covert channel communication through physical interdependencies in cyber-physical infrastructures’. 2014 IEEE Int. Conf. on Smart Grid Communications (SmartGrid-Comm), Venice, Italy, 2014, pp. 952957.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cps.2020.0012
Loading

Related content

content/journals/10.1049/iet-cps.2020.0012
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address