http://iet.metastore.ingenta.com
1887

access icon openaccess Forecasting of commodities prices using a multi-factor PDE model and Kalman filtering

  • PDF
    3.1688613891601562MB
  • XML
    517.5107421875Kb
  • HTML
    582.49609375Kb
Loading full text...

Full text loading...

/deliver/fulltext/iet-cps/3/4/IET-CPS.2018.5064.html;jsessionid=t7kmtqfjv3kb.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fiet-cps.2018.5064&mimeType=html&fmt=ahah

References

    1. 1)
      • 1. Rigatos, G.: ‘State-space approaches for modelling and control in financial engineering: systems theory and machine learning methods’ (Springer, Basel, Switzerland, 2017).
    2. 2)
      • 2. Naser, H.: ‘Estimating and forecasting the real prices of crude oil: a data-rich model using a dynamic model averaging approach’, Energy Econ., 2016, 56, pp. 7587.
    3. 3)
      • 3. Yin, L., Yang, Q.: ‘Predicting the oil prices: do technical indicators help?’, Energy Convers., 2016, 56, pp. 338350.
    4. 4)
      • 4. Croonenbrock, C., Hattel, S.: ‘Quantifying the economic efficiency impact of inaccurate renewable energy price forecasts’, Energy, 2017, 134, pp. 767774.
    5. 5)
      • 5. Rigatos, G.G., Tzafestas, S.G.: ‘Extended Kalman filtering for fuzzy modelling and multi-sensor fusion’, Math. Comput. Model. Dyn. Syst., 2007, 13, pp. 251266.
    6. 6)
      • 6. Basseville, M., Nikiforov, I.: ‘Detection of abrupt changes: theory and applications’ (Prentice-Hall, Upper Saddle River, NJ, USA, 1993).
    7. 7)
      • 7. Rigatos, G., Zhang, Q.: ‘Fuzzy model validation using the local statistical approach’, Fuzzy Sets Syst., 2009, 60, (7), pp. 882904.
    8. 8)
      • 8. Barunik, J., Malinka, B.: ‘Forecasting the term structute of futures prices with neural networks’, Appl. Energy, 2013, 144, pp. 366379.
    9. 9)
      • 9. Kriechbauer, T., Angos, A., Parsons, D., et al: ‘An improved wavelet-ARIMA approach for forecasting metal prices’, Resour. Policy, 2014, 39, pp. 3341.
    10. 10)
      • 10. Ceperic, E., Zikovic, S., Ceperic, V.: ‘Short-term forecasting of natural gas prices using machine learning and feature selection algorithms’, Energy, 2017, 140, (1), pp. 893900.
    11. 11)
      • 11. Wang, J., Wang, J.: ‘Forecasting energy market indices with recurrent neural networks: case study of crude-oil fluctuations’, Energy, 2016, 122, pp. 365374.
    12. 12)
      • 12. Ortiz, M., Ukar, O., Azevod, F., et al: ‘Price forecasting and validation of the Spanish electricity market using forecasts as input data’, Electr. Power Energy Syst., 2016, 77, pp. 125127.
    13. 13)
      • 13. Gargano, A., Timmermann, A.: ‘Forecasting commodity price indexes using macroeconomic and financial predictors’, Int. J. Forecast., 2014, 30, pp. 825843.
    14. 14)
      • 14. Meade, N.: ‘Oil – prices – Brownian motion or mean reversion?, A study using a one-year ahead density forecast criterion’, Energy Econ., 2010, 32, pp. 14851498.
    15. 15)
      • 15. Chiu, Y.C., Chuang, I.Y., Lai, Y.: ‘The performance of composite forecast models of value-at-risk in the energy market’, Energy Econ., 2010, 32, pp. 423431.
    16. 16)
      • 16. Schwartz, E.: ‘The stochastic behavior of commodity prices: implications for valuation and hedging’, J. Finance., 1997, 52, (3), pp. 923973.
    17. 17)
      • 17. Pirrong, G.: ‘Commodity price dynamics: a structural approach’ (Cambridge University Press, London, UK, 2014).
    18. 18)
      • 18. Cortazar, G., Schwartz, E.: ‘Implementing a stochastic model for oil futures prices’, Energy Econ., 2003, 25, (3), pp. 215238.
    19. 19)
      • 19. Date, P., Mamon, R., Tenyakov, A.: ‘Filtering and forecasting commodity futures prices under an HMM framework’, Energy Econ., 2013, 40, pp. 10011013.
    20. 20)
      • 20. Li, Z., Sun, J., Wang, S.: ‘An information diffusion-based model of oil futures price’, Energy Econ., 2013, 36, pp. 518525.
    21. 21)
      • 21. Islyaev, S., Date, P.: ‘Electricity futures price models: calibration and forecasting’, Eur. J. Oper. Res., 2015, 247, (1), pp. 144154.
    22. 22)
      • 22. Schwartz, E., Smith, J.E.: ‘Short-term variations and long-term dynamics in commodity prices’, J. Manag. Sci., 2000, 46, (7), pp. 893911.
    23. 23)
      • 23. Castillo, D., Ferreira, A.M., Garcia-Rodriguez, J.A., et al: ‘Numerical methods to solve PDE models for pricing business companies in different regimes and implementation in GPUs’, Appl. Math. Comput., 2013, 219, pp. 1123311257.
    24. 24)
      • 24. Traykov, M., Trencheva, M., Mavresvski, R., et al: ‘Using partial differential equations for pricing of goods and services’, Sci. Ann. Econ. Bus., 2016, 63, (2), pp. 291298.
    25. 25)
      • 25. Yan, X.: ‘Valuation of commodities derivatives in a new multi-factor model’, Rev. Derivatives Res., 2002, 5, pp. 251271.
    26. 26)
      • 26. Arregui, I., Salvador, B., Vasquez, C.: ‘PDE models and numerical methods for total value adjustment in European and American options with coutenrparty risk’, Appl. Math. Comput., 2017, 308, pp. 3153.
    27. 27)
      • 27. Chen, J., Ewald, C.O.: ‘Pricing commodity futures option in the Schwartz multi-factor model with stochastic volatility: An asymptotic method’, Int. Rev. Financ. Anal., 2017, 52, pp. 144151.
    28. 28)
      • 28. Aiube, F.A.L., Baidya, T.K..N., Tito, E.A.H.: ‘Analysis of commodities prices with the particle filter’, Energy Econ., 2008, 30, pp. 557605.
    29. 29)
      • 29. Peters, G.W., Briers, M., Shevchenko, P., et al: ‘Calibration and filtering for multi factor commodity models with seasonality: incorporating panel data from futures contracts’, Methodol. Comput. Appl. Probab., 2013, 13, (4), pp. 841874.
    30. 30)
      • 30. Aiube, F.A.L.: ‘On the comparison of Schwartz and Smith's two and three-factor models on commodity prices’, J. Appl. Econ., 2014, 46, (30), pp. 37363749.
    31. 31)
      • 31. Pascucci, A.: ‘PDE and martingale methods in option pricing’ (Springer, Berlin, Germany, 2011).
    32. 32)
      • 32. Platen, E., Heath, D.: ‘A benchmark approach to quantitative finance’ (Springer, Milan, Italy, 2008).
    33. 33)
      • 33. Olivier, F., Sedoglavic, A.: ‘A generalization of flatness to nonlinear systems of partial differential equations: application to the control of a flexible rod’. Proc. of the 5th IFAC Symp. on Nonlinear Control Systems, Saint-Petersbourg, 2002.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cps.2018.5064
Loading

Related content

content/journals/10.1049/iet-cps.2018.5064
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address