http://iet.metastore.ingenta.com
1887

access icon openaccess FARIMA model-based communication traffic anomaly detection in intelligent electric power substations

  • HTML
    179.837890625Kb
  • XML
    137.01171875Kb
  • PDF
    4.112368583679199MB
Loading full text...

Full text loading...

/deliver/fulltext/10.1049/iet-cps.2018.5052/IET-CPS.2018.5052.html;jsessionid=3r6molq7n1s29.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fiet-cps.2018.5052&mimeType=html&fmt=ahah

References

    1. 1)
      • 1. IEC Communications Networks and Systems in Substations, IEC 61850, 2005.
    2. 2)
      • 2. Li, F., Qiao, W., Sun, H., et al: ‘Smart transmission grid: vision and framework’, IEEE Trans. Smart Grid, 2010, 1, (2), pp. 168177.
    3. 3)
      • 3. Giustina, D., Rinaldi, S.: ‘Hybrid communication network for the smart grid: results from a field test experience’, IEEE Trans. Power Deliv., 2015, 30, (6), pp. 24922500.
    4. 4)
      • 4. Kolbusz, J., Paszczynski, S., Wilamowski, B.M.: ‘Network traffic model for industrial environment’, IEEE Trans. Ind. Inf., 2006, 2, (4), pp. 213220.
    5. 5)
      • 5. Zhang, Y., Cai, Z., Li, X., et al: ‘Analytical modelling of traffic flow in the substation communication network’, IEEE Trans. Power Deliv., 2015, 30, (5), pp. 21192127.
    6. 6)
      • 6. Wang, J.: ‘A process level network traffic prediction algorithm based on ARIMA model in smart substation’. Proc. 14th IEEE Signal Processing, Communication and Computing (ICSPCC), Kunming, China, August 2013, pp. 15.
    7. 7)
      • 7. Zhu, L., Shi, D., Wang, P.: ‘IEC 61850-based information model and configuration description of communication network in substation automation’, IEEE Trans. Power Deliv., 2014, 29, (1), pp. 97107.
    8. 8)
      • 8. Liu, X., Pang, J., Zhang, L., et al: ‘A high-reliability and determinacy architecture for smart substation process-level network based on cobweb topology’, IEEE Trans. Power Deliv., 2014, 29, (2), pp. 842850.
    9. 9)
      • 9. Yang, T., Zhao, R., Zhang, W., et al: ‘On the modelling and analysis of communication traffic in intelligent electric power substations’, IEEE Trans. Power Deliv., 2017, 32, (3), pp. 13291338.
    10. 10)
      • 10. ISO-IEC 61850, Part 7–9, IEC 61850, 2005.
    11. 11)
      • 11. Fan, C., Chen, X., Ma, Y., et al: ‘Research of configuration about substation based on IEC61850’, Power Syst. Prot. Control, 2007, 35, (8), pp. 4144.
    12. 12)
      • 12. ISO-IEC 61850, Part 8–1: Specific Communication Service Mapping (SCSM) – Mappings to MMS (ISO 9506-1 and ISO 9506-2) and to ISO/IEC 8802-3, May 2004.
    13. 13)
      • 13. Bulbul, R., Sapkota, P., Ten, C., et al: ‘Intrusion evaluation of communication network architectures for power substations’, IEEE Trans. Power Deliv., 2015, 30, (3), pp. 13721382.
    14. 14)
      • 14. ‘Cyber-attack against Ukrainian critical infrastructure’, available at: https://ics-cert.us-cert.gov/alerts/IR-ALERT-H-16-056-01, accessed March 2018.
    15. 15)
      • 15. Sung, A., Mukkamala, S.: ‘Identifying important features for intrusion detection using support vector machines and neural networks’. Symp. Applications and the Internet, Orlando, FL, USA, 2003, pp. 209216.
    16. 16)
      • 16. US-CERT.: ‘Understanding denial-of-service attacks’, available at: https://www.us-cert.gov/ncas/tips/ST04-015, accessed March 2018.
    17. 17)
      • 17. Hoque1, M., Mukit, M., Bikas, M.: ‘An implementation of intrusion detection system using genetic algorithm’, In Proc. Int. J. Netw. Sec. Appl. (IJNSA), 2012, 4, (2), pp. 109120.
    18. 18)
      • 18. Vaidya, B., Makrakis, D., Mouftah, H.: ‘Authentication and authorization mechanisms for substation automation in smart grid network’, IEEE Netw., 2013, 27, (1), pp. 511.
    19. 19)
      • 19. Assadhan, B., Zeb, K., Al-Muhtadi, J., et al: ‘Anomaly detection based on LRD behavior analysis of decomposed control and data planes network traffic using SOSS and FARIMA models’, IEEE. Access, 2017, 5, pp. 1350113519.
    20. 20)
      • 20. Ghazaleh, V., Farshad, A., Sadeqh, J.: ‘On the fractal self-similarity of laryngeal pathologies detection: The estimation of hurst parameter’. 5th Int. Conf. Information Technology and Applications in Biomedicine, Shenzhen, China, May 2008, pp. 383386.
    21. 21)
      • 21. Wooldridge, J.: ‘Introductory econometrics a modern approach’ (South-Western College Publisher, Cincinnati, OH, USA, 2015).
    22. 22)
      • 22. Decotignie, J.: ‘Ethernet-based real-time and industrial communications’, Proc. IEEE, 2005, 93, (6), pp. 11021117.
    23. 23)
      • 23. Leland, W., Taqqu, M., Willinger, W., et al: ‘On the self-similar nature of Ethernet traffic’, IEEE/ACM Trans. Netw., 1994, 2, (1), pp. 115.
    24. 24)
      • 24. Sabatini, A.: ‘A statistical mechanical analysis of postural sway using non-Gaussian FARIMA stochastic models’, IEEE Trans. Biomed. Eng., 2000, 47, (9), pp. 12191227.
    25. 25)
      • 25. Corradi, M., Garroppo, R.G., Giordano, S., et al: ‘Analysis of f-ARIMA processes in the modeling of broadband traffic in communications’. 12th IEEE Int. Conf. Communications Conf. Record on 2001, Helsinki, Finland, August 2001, Vol. 3, pp. 964968.
    26. 26)
      • 26. Akaike, H.: ‘A new look at the statistical model identification’, IEEE Trans. Autom. Control, 1974, 19, (6), pp. 716723.
    27. 27)
      • 27. DARPA intrusion detection evaluation dataset, available at https://www.ll.mit.edu/r-d/datasets/1999-darpa-intrusion-detection-evaluation-data-set, accessed on July 2018.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cps.2018.5052
Loading

Related content

content/journals/10.1049/iet-cps.2018.5052
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address