Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon openaccess Cyber–physical microgrid components fault prognosis using electromagnetic sensors

Higher operational requirements in cyber–physical microgrid system stress the electrical system and may push it to the edge of stability. Therefore, prognosis of the imminent failures is vital. Accessing stray electromagnetic waves of power components helps in power system protection and non-intrusive prognosis of electric components faults in a cyber–physical microgrid environment. This study implements a cyber–physical approach associated between the electromagnetic waves radiated by components in the microgrid and the communication structure. To verify the same, the entire system is implemented on a real-time lab-based microgrid environment. The major problem with the stray electromagnetic waves is receiving appropriate fields. This is resolved by placing magnetic coil antennas at optimal distances and monitoring the radiated electromagnetic waves and their harmonics. Quick response code recognition technique is used to recognise the source and its corresponding healthy mode while harmonic analysis through artificial neural network helps to find the type and origin of faults. This would be an artificial intelligence-enabled system which self-optimises and acts according to the patterns. The proposed monitoring system can be utilised in any cyber–physical microgrid system especially those located in extreme/remote areas.

References

    1. 1)
      • 24. Barzegaran, M., Mazloomzadeh, A., Mohammed, O.A.: ‘Fault diagnosis of the asynchronous machines through magnetic signature analysis using finite-element method and neural networks’, IEEE Trans. Energy Convers., 2013, 28, (4), pp. 10641071.
    2. 2)
      • 1. Nelson, A., Chakraborty, S., Wang, D., et al: ‘Cyber–physical test platform for microgrids: combining hardware, hardware-in-the-loop, and network-simulator-in-the-loop’. Power and Energy Society General Meeting (PESGM), Boston,MA, 2016, pp. 15.
    3. 3)
      • 19. Kezunovic, M., Akleman, E., Knezev, M., et al: ‘Optimized fault location’. Presented at the IREP Symp., Charleston, SC, August 2007.
    4. 4)
      • 18. Choi, S.: ‘Robust condition monitoring and fault diagnosis of variable speed drive of induction motor’. PhD dissertation, Texas A&M University, 2010.
    5. 5)
      • 6. IEEE Std 1547.4-2011: ‘IEEE guide for design, operation, and integration of distributed resource island systems with electric power systems’, 2011, pp. 154.
    6. 6)
      • 25. Barzegaran, M., Mohammed, O.A.: ‘Condition monitoring of electrical machines for extreme environments using electromagnetic stray fields’. 2014 Int. Conf. on Electrical Machines (ICEM), Berlin, Germany, 2014, pp. 24792485.
    7. 7)
      • 17. Toliyat, H.A., Nandi, S., Choi, S., et al: ‘Electric machines: modeling, condition monitoring, and fault diagnosis’ (CRC press, Boca Raton, FL, USA, 2012).
    8. 8)
      • 3. Ayar, M., Trevizan, R., Obuz, S., et al: ‘A cyber–physical robust control framework for enhancing transient stability of smart grids’, IET Cyber–Phys. Syst., Theory Appl., 2017, 2, (4), pp. 198206.
    9. 9)
      • 9. Mehla, N., Dahiya, R.: ‘An approach of condition monitoring of induction motor using MCSA’, Int. J. Syst. Appl. Eng. Dev., 2003, 1, (1), pp. 1317.
    10. 10)
      • 4. Guo, Q., Xin, S., Xu, L., et al: ‘EMS communication routings optimization to enhance power system security considering cyber–physical interdependence’, IET Cyber–Phys. Syst., Theory Appl., 2017, 3, (1), pp. 4453.
    11. 11)
      • 11. Schoen, R.R., Lin, B.K., Habetler, T.G., et al: ‘An unsupervised on-line system for induction motor fault detection using stator current monitoring’, IEEE Trans. Ind. Appl., 1995, 31, (6), pp. 12801286.
    12. 12)
      • 12. Filippetti, F., Franceschini, G., Tassoni, C., et al: ‘AI techniques in induction machines diagnosis including the speed ripple effect’. Proc. IEEE Industry Applications Society Annual Meeting Conf., San Diego, CA, 6–10 October 1996, pp. 655662.
    13. 13)
      • 22. Shi, W., Li, N., Chu, C.C., et al: ‘Real-time energy management in microgrids’, IEEE Trans. Smart Grid, 2017, 8, (1), pp. 228238.
    14. 14)
      • 20. Kezunovic, M.: ‘Smart fault location for smart grids’, IEEE Trans. Smart Grid, 2011, 2, (1), pp. 1122.
    15. 15)
      • 7. Jamil, M., Sharma, S.K., Singh, R.: ‘Fault detection and classification in electrical power transmission system using artificial neural network’, Springerplus., 2015, 4, (1), p. 334.
    16. 16)
      • 27. Du, L., Huang, J.-K., Liu, Q.-Y.: ‘A realization of measurement unit for phasor measurement unit based on DSP’. 2012 Asia-Pacific Power and Energy Engineering Conf. (APPEEC), Shanghai, China, 2012, pp. 13.
    17. 17)
      • 30. National Instruments Corporation: ‘NI X series multifunction data acquisition’, 2014. Available at http://www.ni.com/datasheet/pdf/en/ds-163.
    18. 18)
      • 31. Bhavsar, R.C., Patel, R.A., Bhalja, B.: ‘Condition monitoring of induction motor using artificial neural network’. 2014 Annual Int. Conf. on Emerging Research Areas: Magnetics, Machines and Drives (AICERA/iCMMD), Kottayam, India, 2014, pp. 16.
    19. 19)
      • 14. Penman, J., Yin, C.M.: ‘Feasibility of using unsupervised learning, artificial neural networks for the condition monitoring of electrical machines’, Proc. Inst. Elect. Eng., Elect. Power Appl., 1994, 141, (6), pp. 317322.
    20. 20)
      • 26. Barzegaran, M., Sarikhani, A., Mohammed, O.: ‘An equivalent source model for the study of radiated electromagnetic fields in multi-machine electric drive systems’. 2011 IEEE Int. Symp. on Electromagnetic Compatibility (EMC), Long Beach, CA, USA, 2011, pp. 442447.
    21. 21)
      • 10. Jeevanand, S., Mathew, A.T.: ‘Condition monitoring of induction motors using wavelet based analysis of vibration signals’. Second Int. Conf. on Future Generation Communication and Networking Symposia, Sanya, 2008.
    22. 22)
      • 23. He, H., Yan, J.: ‘Cyber–physical attacks and defences in the smart grid: a survey’, IET Cyber–Phys. Syst., Theory Appl., 2016, 1, (1), pp. 1327.
    23. 23)
      • 32. Particle: ‘Particle photon datasheet’. Available at https://docs.particle.io/datasheets/kits/.
    24. 24)
      • 2. Eghtedarpour, N., Farjah, E.: ‘Distributed charge/discharge control of energy storages in a renewable-energy-based DC micro-grid’, IET Renew. Power Gener., 2014, 8, (1), pp. 4557.
    25. 25)
      • 5. Moldoveanu, C., Hategan, I., Rusu, A., et al: ‘Smart grids: On-line monitoring and condition assessment of high voltage substations’. 2016 IEEE PES 13th Int. Conf. on Transmission & Distribution Construction, Operation & Live-Line Maintenance (ESMO), Columbus, OH, 2016, pp. 15D.
    26. 26)
      • 16. Filippetti, F., Franceschini, G., Tassoni, C., et al: ‘Recent developments of induction motor drives fault diagnosis using AI techniques’, IEEE Trans. Ind. Electron., 2000, 47, (5), pp. 9941004.
    27. 27)
      • 15. Vas, P.: ‘Artificial–intelligence-based electrical machines and drives: applications of fuzzy, neural, fuzzy-neural and genetic algorithm based techniques’ (Oxford Univ. Press, New York, 1999).
    28. 28)
      • 29. Jin, D., Li, Z., Hannon, C., et al: ‘Toward a cyber resilient and secure microgrid using software-defined networking’, IEEE Trans. Smart Grid, 2017, 8, (5), pp. 24942504.
    29. 29)
      • 21. Olivares, D.E., Mehrizi-Sani, A., Etemadi, A.H., et al: ‘Trends in microgrid control’, IEEE Trans. Smart Grid, 2014, 5, (4), pp. 19051919.
    30. 30)
      • 28. MathWorks: ‘Butterworth filter design’. Available at http://in.mathworks.com/help/signal/ref/butter.html.
    31. 31)
      • 8. Mehala, N., Dahiya, R.: ‘Condition monitoring methods, failure identification and analysis for induction machines’, Int. J. Ciruits Syst. Signal Process., 2009, 3, (1), pp. 1017.
    32. 32)
      • 13. Filippetti, F., Franceschini, G., Tassoni, C.: ‘Neural networks aided on-line diagnostics of induction motor faults’. Proc. IEEE Industry Applications Society Annual Meeting Conf., Toronto, ON, Canada, 1993, vol. 1, pp. 316323.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cps.2018.5043
Loading

Related content

content/journals/10.1049/iet-cps.2018.5043
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address