Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon openaccess Cyber–physical microgrid components fault prognosis using electromagnetic sensors

Loading full text...

Full text loading...

/deliver/fulltext/iet-cps/4/2/IET-CPS.2018.5043.html;jsessionid=5jletdo4gdj49.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fiet-cps.2018.5043&mimeType=html&fmt=ahah

References

    1. 1)
      • 24. Barzegaran, M., Mazloomzadeh, A., Mohammed, O.A.: ‘Fault diagnosis of the asynchronous machines through magnetic signature analysis using finite-element method and neural networks’, IEEE Trans. Energy Convers., 2013, 28, (4), pp. 10641071.
    2. 2)
      • 1. Nelson, A., Chakraborty, S., Wang, D., et al: ‘Cyber–physical test platform for microgrids: combining hardware, hardware-in-the-loop, and network-simulator-in-the-loop’. Power and Energy Society General Meeting (PESGM), Boston,MA, 2016, pp. 15.
    3. 3)
      • 19. Kezunovic, M., Akleman, E., Knezev, M., et al: ‘Optimized fault location’. Presented at the IREP Symp., Charleston, SC, August 2007.
    4. 4)
      • 18. Choi, S.: ‘Robust condition monitoring and fault diagnosis of variable speed drive of induction motor’. PhD dissertation, Texas A&M University, 2010.
    5. 5)
      • 6. IEEE Std 1547.4-2011: ‘IEEE guide for design, operation, and integration of distributed resource island systems with electric power systems’, 2011, pp. 154.
    6. 6)
      • 25. Barzegaran, M., Mohammed, O.A.: ‘Condition monitoring of electrical machines for extreme environments using electromagnetic stray fields’. 2014 Int. Conf. on Electrical Machines (ICEM), Berlin, Germany, 2014, pp. 24792485.
    7. 7)
      • 17. Toliyat, H.A., Nandi, S., Choi, S., et al: ‘Electric machines: modeling, condition monitoring, and fault diagnosis’ (CRC press, Boca Raton, FL, USA, 2012).
    8. 8)
      • 3. Ayar, M., Trevizan, R., Obuz, S., et al: ‘A cyber–physical robust control framework for enhancing transient stability of smart grids’, IET Cyber–Phys. Syst., Theory Appl., 2017, 2, (4), pp. 198206.
    9. 9)
      • 9. Mehla, N., Dahiya, R.: ‘An approach of condition monitoring of induction motor using MCSA’, Int. J. Syst. Appl. Eng. Dev., 2003, 1, (1), pp. 1317.
    10. 10)
      • 4. Guo, Q., Xin, S., Xu, L., et al: ‘EMS communication routings optimization to enhance power system security considering cyber–physical interdependence’, IET Cyber–Phys. Syst., Theory Appl., 2017, 3, (1), pp. 4453.
    11. 11)
      • 11. Schoen, R.R., Lin, B.K., Habetler, T.G., et al: ‘An unsupervised on-line system for induction motor fault detection using stator current monitoring’, IEEE Trans. Ind. Appl., 1995, 31, (6), pp. 12801286.
    12. 12)
      • 12. Filippetti, F., Franceschini, G., Tassoni, C., et al: ‘AI techniques in induction machines diagnosis including the speed ripple effect’. Proc. IEEE Industry Applications Society Annual Meeting Conf., San Diego, CA, 6–10 October 1996, pp. 655662.
    13. 13)
      • 22. Shi, W., Li, N., Chu, C.C., et al: ‘Real-time energy management in microgrids’, IEEE Trans. Smart Grid, 2017, 8, (1), pp. 228238.
    14. 14)
      • 20. Kezunovic, M.: ‘Smart fault location for smart grids’, IEEE Trans. Smart Grid, 2011, 2, (1), pp. 1122.
    15. 15)
      • 7. Jamil, M., Sharma, S.K., Singh, R.: ‘Fault detection and classification in electrical power transmission system using artificial neural network’, Springerplus., 2015, 4, (1), p. 334.
    16. 16)
      • 27. Du, L., Huang, J.-K., Liu, Q.-Y.: ‘A realization of measurement unit for phasor measurement unit based on DSP’. 2012 Asia-Pacific Power and Energy Engineering Conf. (APPEEC), Shanghai, China, 2012, pp. 13.
    17. 17)
      • 30. National Instruments Corporation: ‘NI X series multifunction data acquisition’, 2014. Available at http://www.ni.com/datasheet/pdf/en/ds-163.
    18. 18)
      • 31. Bhavsar, R.C., Patel, R.A., Bhalja, B.: ‘Condition monitoring of induction motor using artificial neural network’. 2014 Annual Int. Conf. on Emerging Research Areas: Magnetics, Machines and Drives (AICERA/iCMMD), Kottayam, India, 2014, pp. 16.
    19. 19)
      • 14. Penman, J., Yin, C.M.: ‘Feasibility of using unsupervised learning, artificial neural networks for the condition monitoring of electrical machines’, Proc. Inst. Elect. Eng., Elect. Power Appl., 1994, 141, (6), pp. 317322.
    20. 20)
      • 26. Barzegaran, M., Sarikhani, A., Mohammed, O.: ‘An equivalent source model for the study of radiated electromagnetic fields in multi-machine electric drive systems’. 2011 IEEE Int. Symp. on Electromagnetic Compatibility (EMC), Long Beach, CA, USA, 2011, pp. 442447.
    21. 21)
      • 10. Jeevanand, S., Mathew, A.T.: ‘Condition monitoring of induction motors using wavelet based analysis of vibration signals’. Second Int. Conf. on Future Generation Communication and Networking Symposia, Sanya, 2008.
    22. 22)
      • 23. He, H., Yan, J.: ‘Cyber–physical attacks and defences in the smart grid: a survey’, IET Cyber–Phys. Syst., Theory Appl., 2016, 1, (1), pp. 1327.
    23. 23)
      • 32. Particle: ‘Particle photon datasheet’. Available at https://docs.particle.io/datasheets/kits/.
    24. 24)
      • 2. Eghtedarpour, N., Farjah, E.: ‘Distributed charge/discharge control of energy storages in a renewable-energy-based DC micro-grid’, IET Renew. Power Gener., 2014, 8, (1), pp. 4557.
    25. 25)
      • 5. Moldoveanu, C., Hategan, I., Rusu, A., et al: ‘Smart grids: On-line monitoring and condition assessment of high voltage substations’. 2016 IEEE PES 13th Int. Conf. on Transmission & Distribution Construction, Operation & Live-Line Maintenance (ESMO), Columbus, OH, 2016, pp. 15D.
    26. 26)
      • 16. Filippetti, F., Franceschini, G., Tassoni, C., et al: ‘Recent developments of induction motor drives fault diagnosis using AI techniques’, IEEE Trans. Ind. Electron., 2000, 47, (5), pp. 9941004.
    27. 27)
      • 15. Vas, P.: ‘Artificial–intelligence-based electrical machines and drives: applications of fuzzy, neural, fuzzy-neural and genetic algorithm based techniques’ (Oxford Univ. Press, New York, 1999).
    28. 28)
      • 29. Jin, D., Li, Z., Hannon, C., et al: ‘Toward a cyber resilient and secure microgrid using software-defined networking’, IEEE Trans. Smart Grid, 2017, 8, (5), pp. 24942504.
    29. 29)
      • 21. Olivares, D.E., Mehrizi-Sani, A., Etemadi, A.H., et al: ‘Trends in microgrid control’, IEEE Trans. Smart Grid, 2014, 5, (4), pp. 19051919.
    30. 30)
      • 28. MathWorks: ‘Butterworth filter design’. Available at http://in.mathworks.com/help/signal/ref/butter.html.
    31. 31)
      • 8. Mehala, N., Dahiya, R.: ‘Condition monitoring methods, failure identification and analysis for induction machines’, Int. J. Ciruits Syst. Signal Process., 2009, 3, (1), pp. 1017.
    32. 32)
      • 13. Filippetti, F., Franceschini, G., Tassoni, C.: ‘Neural networks aided on-line diagnostics of induction motor faults’. Proc. IEEE Industry Applications Society Annual Meeting Conf., Toronto, ON, Canada, 1993, vol. 1, pp. 316323.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cps.2018.5043
Loading

Related content

content/journals/10.1049/iet-cps.2018.5043
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address