http://iet.metastore.ingenta.com
1887

access icon openaccess Predictive control model to manage power flow on a hybrid wind-photovoltaic and diesel microgeneration power plant with additional storage capacity

  • HTML
    193.6689453125Kb
  • XML
    135.7734375Kb
  • PDF
    2.866361618041992MB
Loading full text...

Full text loading...

/deliver/fulltext/iet-cps/3/4/IET-CPS.2018.5037.html;jsessionid=3g62654kl7um2.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fiet-cps.2018.5037&mimeType=html&fmt=ahah

References

    1. 1)
      • 1. Zhu, B., Tazvinga, H., Xia, X.: ‘Switched model predictive control for energy dispatching of a photovoltaic-diesel-battery hybrid power system’, IEEE Trans. Control Syst. Technol., 2015, 23, (3), pp. 12291236.
    2. 2)
      • 2. Sachs, J., Sawodny, O.: ‘A two-stage model predictive control strategy for economic diesel-PV-battery island microgrid operation in rural areas’, IEEE Trans. Sustain. Energy, 2016, 7, (3), pp. 903913.
    3. 3)
      • 3. Zhang, Y., Wang, R., Zhang, T., et al: ‘Model predictive control-based operation management for a residential microgrid with considering forecast uncertainties and demand response strategies’, IET Gener. Transm. Distrib., 2016, 10, (10), pp. 23672378.
    4. 4)
      • 4. Torreglosa, J.P., García, P., Fernandez, L.M., et al: ‘Energy dispatching based on predictive controller of an off-grid wind turbine/photovoltaic/hydrogen/battery hybrid system’, Renew. Energy, 2015, 74, pp. 326336.
    5. 5)
      • 5. You, S., Liub, Z., Zonga, Y.: ‘Model predictive control for power fluctuation suppression in hybrid wind/PV/battery systems’. Proc. 4th Int. Conf. on Microgeneration and Related Technologies (Microgen4), 2015, Tokyo, Japan, October 2015.
    6. 6)
      • 6. Sáez, D., Ávila, F., Olivares, D., et al: ‘Fuzzy prediction interval models for forecasting renewable resources and loads in microgrids’, IEEE Trans. Smart Grid, 2015, 6, (2), pp. 548556.
    7. 7)
      • 7. Roumila, Z., Rekioua, D., Rekioua, T.: ‘Energy management based fuzzy logic controller of hybrid system wind/photovoltaic/diesel with storage battery’, Int. J. Hydrog. Energy, 2017, 42, (5), pp. 34183418.
    8. 8)
      • 8. Garcia, P., Torreglosa, J.P., Fernandez, L.M., et al: ‘Optimal energy management system for standalone wind turbine/photovoltaic/hydrogen/battery hybrid system with supervisory control based on fuzzy logic’, Int. J. Hydrog. Energy, 2013, 38, pp. 1414614158.
    9. 9)
      • 9. Amer, M., Namaane, A., M'Sirdi, M.K.: ‘Optimization of hybrid renewable energy systems (HRES) using PSO for cost reduction’, Energy Procedia, 2013, 42, pp. 318327.
    10. 10)
      • 10. Tazvinga, H., Zhu, B., Xia, X.: ‘Energy dispatch strategy for a photovoltaic–wind–diesel–battery hybrid power system’, Solar Energy, 2014, 108, pp. 412420.
    11. 11)
      • 11. Krieger, E.M., Cannarella, J., Arnold, C.B.: ‘A comparison of lead-acid and lithium-based battery behavior and capacity fade in off-grid renewable charging applications’,  Energy, 2013, 60, pp. 492500.
    12. 12)
      • 12. Omar, N., Monem, M.A., Firouz, Y., et al: ‘Lithium iron phosphate based battery – assessment of the aging parameters and development of cycle life model’, Appl. Energy, 2014, 113, pp. 15751585.
    13. 13)
      • 13. Wanga, J., Liua, P., Hicks-Garner, J., et al: ‘Cycle-life model for graphite-LiFePO4 cells’, J. Power Sources, 2011, 196, pp. 39423948.
    14. 14)
      • 14. Xiubin, L., Yue, L., Nantian, W., et al: ‘A novel model-driven method for lithium-ion battery remaining useful life prediction’. Proc. 13th IEEE Int. Conf. on Electronic Measurement and Instruments (ICEMI), Yangzhou, China, October 2017, pp. 446451.
    15. 15)
      • 15. Cai, Y., Yang, L., Deng, Z., et al: ‘Prediction of lithium-ion battery remaining useful life based on hybrid data-driven method with optimized parameter’. Proc. 2nd Int. Conf. on Power and Renewable Energy (ICPRE), Chengdu, China, September 2017, pp. 16.
    16. 16)
      • 16. Entidade Reguladora Serviços Energéticos (ERSE): ‘Caracterização da procura em 2017’, December2016.
    17. 17)
      • 17. Maciejowski, J.M.: ‘Predictive control with constraints’ (Prentice Hall, an imprint of Pearson Education, Harlow, England, 2002).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cps.2018.5037
Loading

Related content

content/journals/10.1049/iet-cps.2018.5037
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address