http://iet.metastore.ingenta.com
1887

access icon openaccess Inflow and outflow stenoses screening on biophysical experimental arteriovenous graft using big spectral data and bidirectional associative memory machine learning model

  • XML
    113.365234375Kb
  • PDF
    4.194846153259277MB
  • HTML
    116.01171875Kb
Loading full text...

Full text loading...

/deliver/fulltext/10.1049/iet-cps.2018.5030/IET-CPS.2018.5030.html;jsessionid=1fgoonlxc5enq.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fiet-cps.2018.5030&mimeType=html&fmt=ahah

References

    1. 1)
      • 1. Asif, A., Gadalean, F.N., Merrill, D., et al: ‘Inflow stenosis in arteriovenous fistulas and grafts: a multicenter, prospective study’, Kidney Int., 2005, 67, pp. 19861992.
    2. 2)
      • 2. Manos, T.A., Sokolis, D.P., Giagini, A.T., et al: ‘Local hemodynamics and intimal hyperplasia at the venous side of a porcine arteriovenous shunt’, IEEE Trans. Inf. Technol. Biomed., 2010, 14, (3), pp. 681690.
    3. 3)
      • 3. Shen, C.C., Lin, C.H.: ‘Chirp-encoded excitation for dual-frequency ultrasound tissue harmonic imaging’, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 2012, 59, (11), pp. 24202430.
    4. 4)
      • 4. Leea, S.W., Fischerb, P.F., Lotha, F., et al: ‘Flow-induced vein-wall vibration in an arterio-venous graft’, J. Fluid Struct., 2005, 20, (6), pp. 837852.
    5. 5)
      • 5. Chen, W.-L.: ‘Arteriovenous access stenosis detection for Hemodialysis patients using phonoangiography techniques: from clinical to physical model’. PhD thesis, Department of Biomedical Engineering, National Cheng Kung University, 30 May 2015.
    6. 6)
      • 6. Chen, W.-L., Lin, Y.-H., Kan, C.-D., et al: ‘Assessment of flow instabilities in in-vitro stenotic arteriovenous grafts using an equivalent astable multivibrator’, IET Sci. Meas. Technol., 2015, 9, (6), pp. 709716.
    7. 7)
      • 7. Chen, W.-L., Kan, C.-D., Lin, C.-H.: ‘Assessment of inflow and outflow stenoses using big spectral data and radial-based color relation analysis on in vitro arterio-venous graft biophysical experimental model’, IET Cyber-Phys. Syst., Theory Appl., 2017, 2, (1), pp. 1019, doi: 10.1049/iet-cps.2016.0040.
    8. 8)
      • 8. Vasquez, P.O., Marco, M.M., Mandersson, B.: ‘Arterio-venous fistula stenosis detection using wavelets and support vector machines’. 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Scoiety, Minneapolis, MN, USA, 2009, pp. 12981301.
    9. 9)
      • 9. Chen, W.-L., Kan, C.-D., Lin, C.-H., et al: ‘Generalized regression estimator improved the accuracy rate of estimated dialysis accesses stenotic condition on in-vitro arteriovenous graft experimental model’, IEEE. Access., 2018, 6, (1), pp. 1038110391.
    10. 10)
      • 10. Tejasviram, V., Solanki, H., Ravi, V., et al: ‘Auto associative extreme learning machine based non-linear principal component regression for big data applications’. 2015 Tenth International Conference on Digital Information Management, Jeju, South Korea, October 2015, doi: 10.1109/ICDIM.2015.7381854.
    11. 11)
      • 11. Zheng, Y., Wu, W., Chen, Y., et al: ‘Visual analytics in urban computing: an overview’, IEEE Trans. Big Data, 2016, 2, (3), pp. 276296.
    12. 12)
      • 12. Collomb, C.: ‘Linear prediction and Levinson-Durbin algorithm’, 2009. Available at http://ccollomb.free. fr/technotes/.
    13. 13)
      • 13. Chen, W.-L., Chen, T., Lin, C.-H., et al: ‘Phonoangiography with a fractional order chaotic system-a novel and simple algorithm in analyzing residual arteriovenous access stenosis’, Med. Biol. Eng. Comput., 2013, 51, (9), pp. 10111019.
    14. 14)
      • 14. Rencher, A.C., Christensen, W.F.: ‘Methods of multivariate analysis’, Wiley Series in Probability and Statistics (John Wiley & Sons, Inc., Hoboken, New Jersey, 2012, 3rd edn.), ISBN: 978-0-470-17896-6.
    15. 15)
      • 15. Cohen, J., Cohen, P., West, S.G., et al: ‘Applied multiple regression/correlation analysis for the behavioral sciences’ (Lawrence Erlbaum Associates, Hillsdale, NJ, USA, 2012, 3rd edn.).
    16. 16)
      • 16. Chartier, S., Boukadoum, M.: ‘A bidirectional heteroassociative memory for binary and grey-level patterns’, IEEE Trans. Neural Netw., 2006, 17, (2), pp. 385396.
    17. 17)
      • 17. Zhang, Z., Pinto, J., Plahl, C.: ‘Channel mapping using bidirectional long short-term memory for dereverberation in hands-free voice controlled devices’, IEEE Trans. Consum. Electron., 2014, 60, (3), pp. 525533.
    18. 18)
      • 18. Berberian, N., Aamir, Z., Helie, S.: ‘Encoding sparse features in a bidirectional associative memory’. 2016 International Joint Conference on Neural networks, Vancouver, BC, Canada, July 2016.
    19. 19)
      • 19. Tao, D., Wen, Y., Hong, R.: ‘Multicolumn bidirectional long short-term memory for mobile devices-based human activity recognition’, IEEE Internet Things J., 2016, 3, (6), pp. 11241134.
    20. 20)
      • 20. Zheng, P., Zhang, J., Tang, W.: ‘Learning associative memories by error backpropagation’, IEEE Trans. Neural Netw., 2011, 22, (3), pp. 347355.
    21. 21)
      • 21. Wu, J.-X., Huang, P.-T., Lin, C.-H., et al: ‘Blood leakage detection during dialysis therapy based on fog computing with array photocell sensors and heteroassociative memory model’, IET Healthc. Technol. Lett., 2018, 5, (1), pp. 3844.
    22. 22)
      • 22. Chartier, S., Giguere, G., Langlois, D.: ‘A new bidirectional hetroassociative memory encompassing correlational, competitive and topological properties’, Neural Netw., 2009, 22, pp. 568578.
    23. 23)
      • 23. Autoregressive all-pole model paparmets-Burg's method: Syntax: arburg, 2016. Available at http://www.mathworks.com/help/signal/ref/arburg.html.
    24. 24)
      • 24. Specht, D.F.: ‘A general regression neural network’, IEEE Trans. Neural Netw., 1991, 2, (6), pp. 568576.
    25. 25)
      • 25. Li, T.-H., Liu, C.-Y., Kuo, P.-H., et al: ‘A three-dimensional adaptive PSO-based packing algorithm for an IOT-based automated e-fulfillment packaging system’, IEEE. Access., 2017, 5, pp. 91889205.
    26. 26)
      • 26. Kan, C.-D., Chen, W.-L., Lin, C.-H., et al: ‘Customized handmade pulmonary valved conduit reconstruction for children and adult patients using meta-learning based intelligent model’, IEEE. Access., 2018, 6, pp. 2138121396.
    27. 27)
      • 27. Wu, J.-X., Huang, P.-T., Li, C.-M., et al: ‘Bidirectional hetero-associative memory network with flexible sensors and could computing for blood leakage detection in intravenous and dialysis therapy’, IEEE Trans. Emerging Top. Comput. Intell., 2018, 2, (4), pp. 298307.
    28. 28)
      • 28. Lipschutz, S.: ‘Data structure with C’ (Tata McGraw-Hill Education, The McGraw-Hill Companies, Inc., New York, 2011).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cps.2018.5030
Loading

Related content

content/journals/10.1049/iet-cps.2018.5030
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address