http://iet.metastore.ingenta.com
1887

access icon openaccess Industrial multi-energy and production management scheme in cyber-physical environments: a case study in a battery manufacturing plant

  • XML
    138.7900390625Kb
  • HTML
    175.62109375Kb
  • PDF
    3.081629753112793MB
Loading full text...

Full text loading...

/deliver/fulltext/10.1049/iet-cps.2018.5029/IET-CPS.2018.5029.html;jsessionid=es4fa0rdg55l9.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fiet-cps.2018.5029&mimeType=html&fmt=ahah

References

    1. 1)
      • 1. Ma, O., Alkadi, N., Cappers, P., et al: ‘Demand response for ancillary services’, IEEE Trans. Smart Grid, 2013, 4, (4), pp. 19881995.
    2. 2)
      • 2. Aghaei, J., Alizadeh, M.-I.: ‘Demand response in smart electricity grids equipped with renewable energy sources: a review’, Renew. Sustain. Energy Rev., 2013, 18, pp. 6472.
    3. 3)
      • 3. International Energy Agency: ‘Key world energy statistics 2016’ (International Energy Agency, Paris, France, 2016). Available at http://www.iea.org/publications/freepublications/publication/key-world-energy-statistics.html.
    4. 4)
      • 4. Mohagheghi, S., Raji, N.: ‘Dynamic demand response: a solution for improved energy efficiency for industrial customers’, IEEE Ind. Appl. Mag., 2015, 21, (2), pp. 5462.
    5. 5)
      • 5. Shoreh, M.H., Siano, P., Shafie-Khah, M., et al: ‘A survey of industrial applications of demand response’, Electr. Power Syst. Res., 2016, 141, pp. 3149.
    6. 6)
      • 6. Mohagheghi, S., Raji, N.: ‘Managing industrial energy intelligently: demand response scheme’, IEEE Ind. Appl. Mag., 2014, 20, (2), pp. 5362.
    7. 7)
      • 7. Diekerhof, M., Hecker, S., Monti, A.: ‘Modeling and optimization of industrial compressed-air energy systems for demand response’. 2016 IEEE Int. Energy Conf. (ENERGYCON), Leuven, Belgium, 2016, pp. 16.
    8. 8)
      • 8. Zhang, X., Hug, G., Kolter, Z., et al: ‘Demand response of ancillary service from industrial loads coordinated with energy storage’, IEEE Trans. Power Syst., 2017, PP, (99), pp. 11.
    9. 9)
      • 9. Mathaba, T., Xia, X., Zhang, J.: ‘Analysing the economic benefit of electricity price forecast in industrial load scheduling’, Electr. Power Syst. Res., 2014, 116, pp. 158165.
    10. 10)
      • 10. Xu, X.Y., Hua, Q.: ‘Industrial big data analysis in smart factory: current Status and research strategies’, IEEE. Access, 2017, 5, pp. 1754317551.
    11. 11)
      • 11. Maffei, A., Srinivasan, S., Meola, D., et al: ‘A cyber-physical systems approach for implementing the receding horizon optimal power flow in smart grids’, IEEE Trans. Sustain. Comput., 2018, 3, (2), pp. 98111.
    12. 12)
      • 12. Srikanth Reddy, K., Panwar, L., Panigrahi, B.K., et al: ‘Demand side management with consumer clusters in cyber-physical smart distribution system considering price-based and reward-based scheduling programs’, IET Cyber-Phys. Syst. Theor. Appl., 2017, 2, (2), pp. 7583.
    13. 13)
      • 13. Saber, A.Y., Venayagamoorthy, G.K.: ‘Efficient utilization of renewable energy sources by gridable vehicles in cyber-physical energy systems’, IEEE Syst. J., 2010, 4, (3), pp. 285294.
    14. 14)
      • 14. Xu, F.Y., Lai, L.L.: ‘Novel active time-based demand response for industrial consumers in smart grid’, IEEE Trans. Ind. Inf., 2015, 11, (6), pp. 15641573.
    15. 15)
      • 15. Ma, K., Hu, G., Spanos, C.J.: ‘A cooperative demand response scheme using punishment mechanism and application to industrial refrigerated warehouses’, IEEE Trans. Ind. Inf., 2015, 11, (6), pp. 15201531.
    16. 16)
      • 16. Reka, S.S., Ramesh, V.: ‘Industrial demand side response modelling in smart grid using stochastic optimisation considering refinery process’, Energy Build., 2016, 127, pp. 8494.
    17. 17)
      • 17. Zhang, X., Hug, G., Kolter, Z., et al: ‘Industrial demand response by steel plants with spinning reserve provision’. 2015 North American Power Symp. (NAPS), Charlotte, NC, USA, 2015, pp. 16.
    18. 18)
      • 18. Ding, Y.M., Hong, S.H., Li, X.H.: ‘A demand response energy management scheme for industrial facilities in smart grid’, IEEE Trans. Ind. Inf., 2014, 10, (4), pp. 22572269.
    19. 19)
      • 19. Zhang, X., Hug, G., Kolter, J.Z., et al: ‘Model predictive control of industrial loads and energy storage for demand response’. 2016 IEEE Power and Energy Society General Meeting (PESGM), Boston, MA, USA, 2016, pp. 15.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cps.2018.5029
Loading

Related content

content/journals/10.1049/iet-cps.2018.5029
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address