Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon openaccess Stabilising control strategy for cyber-physical power systems

The cyber-physical nature of electric power systems has increased immensely over the past decades, with advanced communication infrastructure paving the way. It is now possible to design wide-area controllers, relying on remote monitor and control of devices that can tackle power system stability problems more effectively than local controllers. However, their performance and security relies extensively on the communication infrastructure and can make power systems vulnerable to disturbances emerging on the cyber side of the system. In this study, the authors investigate the effect of communication delays on the performance of wide-area damping controllers designed to stabilise oscillatory modes in a cyber-physical power system (CPPS). They propose a rule-based control strategy that combines wide-area and traditional local stabilising controllers to increase the performance and maintain the stable operation of CPPS. The proposed strategy is validated on a reduced CPPS equivalent model of Great Britain.

References

    1. 1)
      • 1. Yu, X., Xue, Y.: ‘Smart grids: a cyber-physical systems perspective’, Proc. IEEE, 2016, 104, (5), pp. 10581070.
    2. 2)
      • 7. Zhang, Y., Bose, A.: ‘Design of wide-area damping controllers for interarea oscillations’, IEEE Trans. Power Syst., 2008, 23, (3), pp. 11361143.
    3. 3)
      • 15. Li, T., Wu, M., He, Y.: ‘Lyapunov–Krasovskii functional based power system stability analysis in environment of WAMS’, J. Cent. South Univ. Technol., 2010, 17, (4), pp. 801806.
    4. 4)
      • 3. Jain, S., Vinoth, K.N., Paventhan, A., et al: ‘Survey on smart grid technologies-smart metering, IoT and EMS’. 2014 IEEE Students’ Conf. Electrical, Electronics and Computer Science SCEECS 2014, Bhopal, India, 2014.
    5. 5)
      • 2. Wang, W., Xu, Y., Khanna, M.: ‘A survey on the communication architectures in smart grid’, Comput. Netw., 2011, 55, (15), pp. 36043629.
    6. 6)
      • 43. Cisco Systems: ‘Cisco ONS 15501 erbium doped fiber amplifier data sheet’. Technical Report Available at http://cicsno.com.
    7. 7)
      • 50. Kundur, P., Kundur, P.: ‘Power system stability and control’ (McGraw-Hill Education, USA, 1994).
    8. 8)
      • 40. Elmirghani, J.M.H., Klein, T., Hinton, K., et al: ‘Greentouch GreenMeter core network energy-efficiency improvement measures and optimization’, J. Opt. Commun. Netw., 2018, 10, (2), p. A250.
    9. 9)
      • 10. Saputro, N., Akkaya, K., Uludag, S.: ‘A survey of routing protocols for smart grid communications’, Comput. Netw., 2012, 56, (11), pp. 27412771.
    10. 10)
      • 5. Vellaithurai, C.B., Biswas, S.S., Liu, R., et al: ‘Real time modeling and simulation of cyber-power system’, in Khaitan, S.K., McCalley, J.D., Liu, C.C. (Eds.): ‘Cyber physical systems approach to smart electric power grid’ (Springer, Berlin, Heidelberg, 2015), pp. 4374.
    11. 11)
      • 48. Glover, K., Doyle, J.C.: ‘State-space formulae for all stabilizing controllers that satisfy an H-inf-norm bound and relations to relations to risk sensitivity’, Syst. Control Lett., 1988, 11, (3), pp. 167172.
    12. 12)
      • 46. Pal, B., Chaudhuri, B.: ‘Robust control in power systems’, ser. power electronics and power systems (Springer, Boston, USA, 2005).
    13. 13)
      • 9. Li, Y., Zhou, Y., Liu, F., et al: ‘Design and implementation of delay-dependent wide-area damping control for stability enhancement of power systems’, IEEE Trans. Smart Grid, 2017, 8, (4), pp. 18311842.
    14. 14)
      • 4. Nourizadeh, S., Karimi, M., Ranjbar, A., et al: ‘Power system stability assessment during restoration based on a wide area measurement system’, IET Gener. Transm. Distrib., 2012, 6, (11), pp. 11711179.
    15. 15)
      • 44. Glimmerglass: ‘Intelligent optical system 600’, 2013. Available at http://www.glimmerglass.com/products/intelligent-optical-systems, accessed on 12 October 2017.
    16. 16)
      • 8. Li, Y., Rehtanz, C., Yang, D., et al: ‘Robust high-voltage direct current stabilising control using wide-area measurement and taking transmission time delay into consideration’, IET Gener. Transm. Distrib., 2011, 5, (3), p. 289.
    17. 17)
      • 30. Goebel, R., Sanfelice, R., Teel, A.: ‘Hybrid dynamical systems’, IEEE Control Syst., 2009, 29, (2), pp. 2893.
    18. 18)
      • 34. Dynamic models for steam and hydro turbines in power system studies’. Technical Report 6, November 1973.
    19. 19)
      • 42. Infinera: ‘Low latency – how low can you go ?White Paper, 2015.
    20. 20)
      • 17. Milano, F., Anghel, M.: ‘Impact of time delays on power system stability’, IEEE Trans. Circuits Syst. I, Regul. Pap., 2012, 59, (4), pp. 889900.
    21. 21)
      • 21. Ye, H., Liu, Y., Zhang, P.: ‘Efficient eigenanalysis for large delayed cyber-physical power system using explicit infinitesimal generator discretization’, IEEE Trans. Power Syst., 2016, 31, (3), pp. 23612370.
    22. 22)
      • 12. Aboul-Ela, M., Sallam, A., McCalley, J., et al: ‘Damping controller design for power system oscillations using global signals’, IEEE Trans. Power Syst., 1996, 11, (2), pp. 767773.
    23. 23)
      • 26. Shah, R., Mithulananthan, N., Lee, K.Y.: ‘Large-scale PV plant with a robust controller considering power oscillation damping’, IEEE Trans. Energy Convers., 2013, 28, (1), pp. 106116.
    24. 24)
      • 37. Samitier, C.: ‘Utility communication networks and services: specification, deployment and operation’ (Springer, Switzerland, 2016).
    25. 25)
      • 23. Zabaiou, T., Dessaint, L.-A., Okou, F.-A., et al: ‘Wide-area coordinating control of SVCs and synchronous generators with signal transmission delay compensation’. IEEE PES General Meeting, Providence, RI, USA, July 2010, pp. 19.
    26. 26)
      • 36. BT: ‘21CN network topology’, 2007. Available at http://www.btwholesale.com/content/binaries/21_Century_Network_Community/NSWG -Material 3 July 07 v5.zip, accessed on 10 August 2017.
    27. 27)
      • 13. Chaudhuri, B., Majumder, R., Pal, B.: ‘Wide-area measurement-based stabilizing control of power system considering signal transmission delay’, IEEE Trans. Power Syst., 2004, 19, (4), pp. 19711979.
    28. 28)
      • 47. Lin, F.: ‘Robust control design’, ser. RSP series in control theory and applications (John Wiley & Sons, Ltd., Chichester, UK, 2007).
    29. 29)
      • 25. Ke, D.P., Chung, C.Y., Xue, Y.: ‘An eigenstructure-based performance index and its application to control design for damping inter-area oscillations in power systems’, IEEE Trans. Power Syst., 2011, 26, (4), pp. 23712380.
    30. 30)
      • 24. Wu, H., Tsakalis, K., Heydt, G.: ‘Evaluation of time delay effects to wide-area power system stabilizer design’, IEEE Trans. Power Syst., 2004, 19, (4), pp. 19351941.
    31. 31)
      • 28. Zhang, P., Yang, D., Chan, K., et al: ‘Adaptive wide-area damping control scheme with stochastic subspace identification and signal time delay compensation’, IET Gener. Transm. Distrib., 2012, 6, (9), p. 844.
    32. 32)
      • 6. Chakrabortty, A., Khargonekar, P.P.: ‘Introduction to wide-area control of power systems’. 2013 American Control Conf., Washington, D.C., USA, 2013, pp. 67586770.
    33. 33)
      • 51. Gibbard, M., Pourbeik, P., Vowles, D.: ‘Small-signal stability, control and dynamic performance of power systems’ (University of Adelaide Press, Adelaide, 2015).
    34. 34)
      • 19. Zhang, S., Vittal, V.: ‘Design of wide-area power system damping controllers resilient to communication failures’, IEEE Trans. Power Syst., 2013, 28, (4), pp. 42924300.
    35. 35)
      • 29. Wang, J.K., Peng, C.: ‘Analysis of time delay attacks against power grid stability’. Proc. Second Workshop on Cyber-Physical Security and Resilience in Smart Grids – CPSR-SG'17, New York, New York, USA, 2017, pp. 6772.
    36. 36)
      • 14. Li, J., Chen, Z., Cai, D., et al: ‘Delay-dependent stability control for power system with multiple time-delays’, IEEE Trans. Power Syst., 2016, 31, (3), pp. 23162326.
    37. 37)
      • 53. Soudbakhsh, D., Chakrabortty, A., Annaswamy, A.M.: ‘A delay-aware cyber-physical architecture for wide-area control of power systems’, Control Eng. Pract., 2017, 60, pp. 171182.
    38. 38)
      • 52. Åström, K.J., Wittenmark, B.: ‘Adaptive control’ (Courier Corporation, USA, 2013).
    39. 39)
      • 41. Vinod, J., Brett, C.: ‘Deploying QoS for cisco IP and next generation networks: the definitive guide’ (Elsevier, USA, 2009). Available at http://linkinghub.elsevier.com/retrieve/pii/B9780123744616X00018.
    40. 40)
      • 49. Mendoza-Armenta, S., Dobson, I.: ‘Applying a formula for generator redispatch to damp interarea oscillations using synchrophasors’, IEEE Trans. Power Syst., 2016, 31, (4), pp. 31193128.
    41. 41)
      • 39. Csoma, A., Toka, L., Gulyas, A.: ‘On lower estimating Internet queuing delay’. 2015 38th Int. Conf. Telecommunications and Signal Processing TSP 2015, Prague, Czech Republic, 2015, pp. 299303.
    42. 42)
      • 33. Anderson, P.M., Fouad, A.A.: ‘Power system control and stability’ (Wiley-IEEE Press, USA, 2002, 2nd edn.).
    43. 43)
      • 16. Qiang, S., Haiyun, A., Hongjie, J., et al: ‘An improved power system stability criterion with multiple time delays’. 2009 IEEE Power & Energy Society General Meeting, Calgary, AB, Canada, July 2009, pp. 17.
    44. 44)
      • 32. Belivanis, M., Bell, K.: ‘Representative GB network model: notes’. Technical Report, University of Strathclyde, Glasgow, Scotland, 2011.
    45. 45)
      • 35. Kitz: ‘BT 21CN – network topology’, 2018. Available at https://kitz.co.uk/adsl/21cn_network.htm.
    46. 46)
      • 45. Younis, M.R., Iravani, R.: ‘Wide-area damping control for inter-area oscillations: a comprehensive review’. 2013 IEEE Electrical Power & Energy Conf., Halifax, NS, Canada, August 2013, pp. 16.
    47. 47)
      • 22. Gao, W., Ye, H., Liu, Y., et al: ‘Comparison of three stability analysis methods for delayed cyber-physical power system’. 2016 China Int. Conf. Electricity Distribution (CICED), Xi'an, Shaanxi Province, China, August 2016, vol. 2016-Septe, no. Ciced, pp. 15.
    48. 48)
      • 27. Preece, R., Milanovic, J.V., Almutairi, A.M., et al: ‘Probabilistic evaluation of damping controller in networks with multiple VSC-HVDC lines’, IEEE Trans. Power Syst., 2013, 28, (1), pp. 367376.
    49. 49)
      • 38. Shen, G., Tucker, R.S.: ‘Energy-minimized design for IP over WDM networks’, J. Opt. Commun. Netw., 2009, 1, (1), p. 176.
    50. 50)
      • 31. Mueller, S.C., Georg, H., Nutaro, J., et al: ‘Interfacing power system and ICT simulators: challenges, state-of-the-art, and case studies’, IEEE Trans. Smart Grid, 2016, PP, (99), p. 1.
    51. 51)
      • 18. Jarlebring, E., Damm, T.: ‘The Lambert W function and the spectrum of some multidimensional time-delay systems’, Automatica, 2007, 43, (12), pp. 21242128.
    52. 52)
      • 11. Blackout 2003: final report on the August 14, 2003 blackout in the United States and Canada: causes and recommendations’. Technical Report, Electricity Markets and Policy Group, Energy Analysis and Environmental Impacts Department, US Department of Energy, Washington, D.C., 2004. Available at https://www.energy.gov/sites/prod/files/oeprod/DocumentsandMedia/BlackoutFinal-Web.pdf, accessed on 10 August 2017.
    53. 53)
      • 20. Olgac, N., Sipahi, R.: ‘An exact method for the stability analysis of time-delayed linear time-invariant (LTI) systems’, IEEE Trans. Autom. Control, 2002, 47, (5), pp. 793797.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cps.2018.5020
Loading

Related content

content/journals/10.1049/iet-cps.2018.5020
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address