http://iet.metastore.ingenta.com
1887

access icon openaccess Fault data injection attack on car-following model and mitigation based on interval type-2 fuzzy logic controller

  • PDF
    6.319374084472656MB
  • HTML
    162.3349609375Kb
  • XML
    142.6669921875Kb
Loading full text...

Full text loading...

/deliver/fulltext/10.1049/iet-cps.2018.5012/IET-CPS.2018.5012.html;jsessionid=949k2lleu7t8h.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fiet-cps.2018.5012&mimeType=html&fmt=ahah

References

    1. 1)
      • 1. Kwon, C., Hwang, M.: ‘Cyber attack mitigation for cyber-physical systems: hybrid system approach to controller design’, IET Control Theory Applic., 2016, 10, (7), pp. 731741.
    2. 2)
      • 2. Schwung, A.: ‘Cyber-physical modeling of compression systems using hybrid automata’. Proc. IEEE Int. Conf. on Automation Science and Engineering (CASE), Gothenburg, 24–28 August 2015, pp. 11251130.
    3. 3)
      • 3. Amin, S., Cardenas, A.A., Sastry, S.S.: ‘Safe and secure networked control systems under denial-of-service attacks’. Proc. 12th Int. Conf. on Hybrid Systems: Computation and Control, San Francisco, 2009, pp. 3145.
    4. 4)
      • 4. Liu, Y., Ning, P., Reiter, M.K.: ‘False data injection attacks against state estimation in electric power grids’. Proc. 16th ACM Conf. on Computer and Communications Security, New York, 9–13 November 2009, pp. 2132.
    5. 5)
      • 5. Teixeira, A., Amin, S., Sandberg, H., et al: ‘Cyber security analysis of state estimators in electric power systems’. Proc. 49th IEEE Conf. on Decision and Control (CDC), Atlanta, GA, USA, 15–17 December 2010, pp. 59915998.
    6. 6)
      • 6. Esfahani, P.M., Vrakopoulou, M., Margellos, K., et al: ‘A robust policy for automatic generation control cyber attack in two area power network’. Proc. 49th IEEE Conf. on Decision and Control (CDC), Atlanta, GA, USA, 15–17 December 2010, pp. 59735978.
    7. 7)
      • 7. Mo, Y., Garone, E., Casavola, A., et al: ‘False data injection attacks against state estimation in wireless sensor networks’. Proc. 49th IEEE Conf. on Decision and Control (CDC), Atlanta, GA, USA, 15–17 December 2010, pp. 59675972.
    8. 8)
      • 8. Kosut, O., Liyan, J., Thomas, R.J., et al: ‘Malicious data attacks on the smart grid’, IEEE Trans. Smart Grid, 2011, 2, (1), pp. 645658.
    9. 9)
      • 9. Arney, D., Venkatasubramanian, K.K., Sokolsky, O., et al: ‘Biomedical devices and systems security’. Proc. 33rd Annual Int. Conf. of the IEEE Engineering in Medicine and Biology Society (EMBC ‘11), Boston, 30 August–3 September 2011, pp. 23762379.
    10. 10)
      • 10. Abaspour, A., Sadeghi, M., Sadati, H.: ‘Using fuzzy logic in dynamic inversion flight controller with considering uncertainties’. Proc. Iranian Conf. on Fuzzy Systems (IFSC), Iran, 27–29 August 2013, pp. 16.
    11. 11)
      • 11. Liu, S., Liu, X.P., Saddik, A.E.: ‘Denial-of-service (DoS) attacks on load frequency control in smart grids’. Proc. Innovative Smart Grid Technologies (ISGT), IEEE PES, Washington DC, USA, 24–27 February 2013, pp. 16.
    12. 12)
      • 12. Lopez, C., Sargolzaei, A., Santana, H., et al: ‘Smart grid cyber security: an overview of threats and countermeasures’, J. Energy Power Eng., 2015, 9, (2015), pp. 632647.
    13. 13)
      • 13. Sargolzaei, A., Kang, K.Y., Abdelghani, M.N.: ‘Preventing time-delay switch attack on load frequency control in distributed power systems’, IEEE Trans. Smart Grid, 2016, 7, (2), pp. 11761185.
    14. 14)
      • 14. Abbaspour, A., Yen, K.K., Noei, S., et al: ‘Detection of fault data injection attack on UAV using adaptive neural network’, Procedia Comput. Sci., 2016, 95, (1), pp. 193200.
    15. 15)
      • 15. Abbaspour, A., Aboutalebi, P., Yen, K.K., et al: ‘Neural adaptive observer-based sensor and actuator fault detection in nonlinear systems: application in UAV’, ISA Trans., 2017, 67, (3), pp. 317329.
    16. 16)
      • 16. Sargolzaei, A., Yen, K.K., Abdelghani, M.: ‘Time-delay switch attack on load frequency control in smart grid’, J. Adv. Commun. Technol., 2014, 5, (1), pp. 5564.
    17. 17)
      • 17. Di-Battista, J., Christophe Courrege, J., Rouzeyre, B., et al: ‘When failure analysis meets side-channel attacks’. Proc. 12th Int. Workshop on Cryptographic Hardware and Embedded Systems, Santa Barbara, CA, USA, 17–20 August 2010, pp. 188202.
    18. 18)
      • 18. Moradi, A., Mischke, O., Paar, C., et al: ‘On the power of fault sensitivity analysis and collision side-channel attacks in a combined setting’. Proc. 12th Int. Workshop on Cryptographic Hardware and Embedded Systems, Santa Barbara, CA, USA, 17–20 August 2010, pp. 292311.
    19. 19)
      • 19. Yuan, Y., Li, Z., Ren, K.: ‘Modeling load redistribution attacks in power systems’, IEEE Trans. Smart Grid, 2011, 2, (2), pp. 382390.
    20. 20)
      • 20. Sargolzaei, A., Yen, K.K., Abdelghani, M., et al: ‘Generalized attack model for networked control systems, evaluation of control methods’, Intell. Control Autom., 2017, 8, (3), pp. 164174.
    21. 21)
      • 21. Kharol, A., Patil, P., Raiwani, S., et al: ‘A comparison study for control and stabilisation of inverted pendulum on inclined surface (IPIS) using PID and fuzzy controllers’, Recent Trends Eng. Mater. Sci. Perspect. Sci., 2016, 8, (1), pp. 187190.
    22. 22)
      • 22. O'Dywer, A.: ‘Handbook of PI and PID controller tuning rules’ (Imperial College Press, Dublin Institute of Technology, Singapore, 2009, 3rd edn.).
    23. 23)
      • 23. Tamara, J., Noemi, M.: ‘An auto-tuning PID control system based on genetic algorithms to provide delay guarantees in passive optical networks’, Expert Syst. Appl., 2015, 42, (23), pp. 92119220.
    24. 24)
      • 24. Eiben, A.E., Smith, J.E.: ‘Introduction to evolutionary computation’ (Springer Verlag, London, 2015, 2nd edn.).
    25. 25)
      • 25. Castillo, O., Amador-Angulo, L., Castro, J.R., et al: ‘A comparative study of type-1 fuzzy logic systems, interval type-2 fuzzy logic systems and generalized type-2 fuzzy logic systems in control problems’, Inf. Sci., 2016, 354, (1), pp. 257274.
    26. 26)
      • 26. Saltelli, A., Sobol, I.M.: ‘About the use of rank transformation in sensitivity analysis of model output’, Reliab. Eng. Syst. Saf., 1995, 50, (3), pp. 225239.
    27. 27)
      • 27. Cukier, R.I., Fortuin, C.M., Schuler, K.E., et al: ‘Study of the sensitivity of coupled reaction systems to uncertainties in rate coefficients. I theory’, J. Chem. Phys., 2003, 59, (8), pp. 38733878.
    28. 28)
      • 28. Saltelli, A., Ratto, M., Andres, T., et al: ‘Global sensitivity analysis. The primer’ (John Wiley and Sons, Oxford, UK, 2008).
    29. 29)
      • 29. Sobol, I.M.: ‘Sensitivity estimates for non-linear mathematical models’, Math. Model. Comput. Exp., 1993, 1, (4), pp. 407414.
    30. 30)
      • 30. Homma, T., Saltelli, A.: ‘Importance measures in global sensitivity analysis of model output’, Reliab. Eng. Syst. Saf., 1996, 52, (1), pp. 117.
    31. 31)
      • 31. Al-Jhayyish, A.M.H., Schmidt, K.W.: ‘Feed-forward strategies for cooperative adaptive cruise control in heterogeneous vehicle strings’, IEEE Trans. Intell. Transp. Syst., 2018, 19, (1), pp. 113122.
    32. 32)
      • 32. Zhang, L., Sun, J., Orosz, G.: ‘Hierarchical design of connected cruise control in the presence of information delays and uncertain vehicle dynamics’, IEEE Trans. Control Syst. Technol., 2018, 26, (1), pp. 139150.
    33. 33)
      • 33. Noei, S., Sargolzaei, A., Abbaspour, A., et al: ‘A decision support system for improving resiliency of cooperative adaptive cruise control systems’, Procedia Comput. Sci., 2016, 95, (1), pp. 489496.
    34. 34)
      • 34. Kesting, A., Treiber, M., Helbing, D.: ‘Enhanced intelligent driver model to access the impact of driving strategies on traffic capacity’, Philos. Trans. R. Soc. A, 2010, 368, (1), pp. 45854605.
    35. 35)
      • 35. Yang, L., Zhang, X., Gong, J., et al: ‘The research of car-following model based on real-time maximum deceleration’, Math. Probl. Eng., 2015, 2015, (1), pp. 110.
    36. 36)
      • 36. Prabhakar, G., Selvaperumal, S., Nedumal Pugazhenthi, P.: ‘Fuzzy PD plus I control based adaptive cruise control system in simulation and real-time environment’, IETE J. Res., 2018, pp. 111, doi: 10.1080/03772063.2017.1407269.
    37. 37)
      • 37. Ciuffo, B., Punzo, V., Montanino, M.: ‘Global sensitivity analysis techniques to simplify the calibration of traffic simulation models. Methodology and application to the IDM car-following model’, IET Intell. Transp. Syst., 2014, 8, (5), pp. 479489.
    38. 38)
      • 38. Hisdal, E.: ‘The IF THEN ELSE statement and interval-valued fuzzy sets of higher type’, Int. J. Man–Mach. Stud., 1981, 15, (4), pp. 385455.
    39. 39)
      • 39. Liang, Q., Mendel, J.M.: ‘Interval type-2 fuzzy logic systems: theory and design’, IEEE Trans. Fuzzy Syst., 2000, 8, (5), pp. 535550.
    40. 40)
      • 40. Mendel, J.M., John, R.I., Liu, F.: ‘Interval type-2 fuzzy logic systems made simple’, IEEE Trans. Fuzzy Syst., 2006, 14, (6), pp. 808821.
    41. 41)
      • 41. Aminifar, S., Marzuki, A.: ‘Uncertainty in interval type-2 fuzzy systems’, Math. Probl. Eng., 2013, 2013, (1), pp. 116.
    42. 42)
      • 42. Taskin, A., Kumbasar, T.: ‘An open source MATLAB/Simulink toolbox for interval type-2 fuzzy logic systems’. Proc. IEEE Symp. Series on Computational Intelligence, Cape Town, SA, 7–10 December 2015, pp. 15611568.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cps.2018.5012
Loading

Related content

content/journals/10.1049/iet-cps.2018.5012
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address