This is an open access article published by the IET under the Creative Commons Attribution-NonCommercial-NoDerivs License (http://creativecommons.org/licenses/by-nc-nd/3.0/)
Full text loading...
/deliver/fulltext/iet-cps/3/2/IET-CPS.2017.0073.html;jsessionid=3n6ikivwvg987.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fiet-cps.2017.0073&mimeType=html&fmt=ahah
References
-
-
1)
-
1. Cavin, R.K., Lugli, P., Zhirnov, V.V.: ‘Science and engineering beyond moore's law’, Proc. IEEE, 2012, 100, pp. 1720–1749.
-
2)
-
2. Cumming, D.R.S., Furber, S.B., Paul, D.J.: ‘Beyond moore's law’, Philos. Trans. R. Soc. Lond. A, Math. Phys. Eng. Sci., 2014, 372, (2012), p. 20130376.
-
3)
-
3. Markov, I.L.: ‘Limits on fundamental limits to computation’, Nature, 2014, 512, (7513), pp. 147–154.
-
4)
-
4. Meindl, J.D., Chen, Q., Davis, J.A.: ‘Limits on silicon nanoelectronics for terascale integration’, Science, 2001, 293, (5537), pp. 2044–2049.
-
5)
-
5. Chen, J.: ‘Self-calibrating on-chip interconnects’. , Stanford University, 2012.
-
6)
-
6. Ceyhan, A., Naeemi, A.: ‘Cu interconnect limitations and opportunities for swnt interconnects at the end of the roadmap’, IEEE Trans. Electron Devices, 2013, 60, (1), pp. 374–382.
-
7)
-
7. Prasad, D., Ceyhan, A., Pan, C., et al: ‘Adapting interconnect technology to multigate transistors for optimum performance’, IEEE Trans. Electron Devices, 2015, 62, (12), pp. 3938–3944.
-
8)
-
8. Kumar, V., Bashirullah, R., Naeemi, A.: ‘Modeling, optimization and benchmarking of chip-to-chip electrical interconnects with low loss air-clad dielectrics’. IEEE 61st Electronic Components and Technology Conf. (ECTC), 2011, 2011, pp. 2084–2090.
-
9)
-
9. Kumar, V.: ‘Modeling and optimization approaches for benchmarking emerging on-chip and off-chip interconnect technologies’. , Georgia Institute of Technology, 2014.
-
10)
-
10. Miller, D.A.B., Ozaktas, H.M.: ‘Limit to the bit-rate capacity of electrical interconnects from the aspect ratio of the system architecture’, J. Parallel Distrib. Comput., 1997, 41, (1), pp. 42–52.
-
11)
-
11. Jornet, J.M., Akyildiz, I.F.: ‘Fundamentals of electromagnetic nanonetworks in the terahertz band’, Found. Trends Netw., 2013, 7, (2-3), pp. 77–233, .
-
12)
-
12. Akyildiz, I.F., Jornet, J.M., Han, C.: ‘Terahertz band: next frontier for wireless communications’, Phys. Commun., 2014, 12, pp. 16–32.
-
13)
-
13. Blake, P.: ‘Making graphene visible’, Appl. Phys. Lett., 2007, 91, p. 063124, .
-
14)
-
14. Xia, F., Mueller, T., Lin, Y.-M., et al: ‘Ultrafast graphene photodetector’, Nat. Nanotechnol., 2009, 4, (12), pp. 839–843, .
-
15)
-
15. Yan, H., Li, X., Chandra, B., et al: ‘Tunable infrared plasmonic devices using graphene/insulator stacks’, Nat. Nanotechnol., 2012, 7, (5), pp. 330–334, .
-
16)
-
16. Kumada, N., Tanabe, S., Hibino, H., et al: ‘Plasmon transport in graphene investigated by time-resolved electrical measurements’, Nat. Commun., 2013, 4, p. 1363, .
-
17)
-
17. Luo, X., Qiu, T., Lu, W., et al: ‘Plasmons in graphene: recent progress and applications’, Mater. Sci, Eng. R, Rep., 2013, 74, (11), pp. 351–376, .
-
18)
-
18. Jablan, M., Buljan, H., Soljačić, M.: ‘Plasmonics in graphene at infrared frequencies’, Phys. Rev. B, 2009, 80, (24), p. 245435.
-
19)
-
19. Hanson, G.W.: ‘Quasi-transverse electromagnetic modes supported by a graphene parallel-plate waveguide’, J. Appl. Phys., 2008, 104, (8), p. 084314.
-
20)
-
20. Gan, C.H., Chu, H.S., Li, E.P.: ‘Synthesis of highly confined surface plasmon modes with doped graphene sheets in the midinfrared and terahertz frequencies’, Phys. Rev. B, 2012, 85, (12), p. 125431.
-
21)
-
21. Ryzhii, V.: ‘Terahertz plasma waves in gated graphene heterostructures’, Jpn. J. Appl. Phys., 2006, 45, (35), pp. L923–L925.
-
22)
-
22. Ryzhii, V., Satou, A., Otsuji, T.: ‘Plasma waves in two-dimensional electron–hole system in gated graphene heterostructures’, J. Appl. Phys., 2007, 101, (2), p. 024509, .
-
23)
-
23. Sensale-Rodriguez, B., Yan, R., Liu, L., et al: ‘Graphene for reconfigurable terahertz optoelectronics’, Proc. IEEE, 2013, 101, (7), pp. 1705–1716, .
-
24)
-
24. Rakheja, S., Sengupta, P.: ‘Gate-voltage tunability of plasmons in single-layer graphene structures – analytical description, impact of interface states, and concepts for terahertz devices’, IEEE Trans. Nanotechnol., 2016, 15, (1), pp. 113–121.
-
25)
-
25. ITRS: ‘The international technology roadmap for semiconductors’, .
-
26)
-
26. Faugeras, C., Nerrière, A., Potemski, M., et al: ‘Few-layer graphene on sic, pyrolitic graphite, and graphene: a Raman scattering study’, Appl. Phys. Lett., 2008, 92, (1), p. 011914.
-
27)
-
27. Reina, A., Jia, X., Ho, J., et al: ‘Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition’, Nano Lett., 2008, 9, (1), pp. 30–35.
-
28)
-
28. Rakheja, S.: ‘Communication limits of on-chip graphene plasmonic interconnects’. 2017 18th Int. Symp. Quality Electronic Design (ISQED), 2017, pp. 45–51.
-
29)
-
29. Falkovsky, L.A.: ‘Optical properties of graphene’, J. Phys., Conf. Ser., 2008, 129, (1), p. 012004.
-
30)
-
30. Sui, Y., Appenzeller, J.: ‘Screening and interlayer coupling in multilayer graphene field-effect transistors’, Nano Lett., 2009, 9, (8), pp. 2973–2977.
-
31)
-
31. Perebeinos, V., Avouris, P.: ‘Inelastic scattering and current saturation in graphene’, Phys. Rev. B, 2010, 81, (19), p. 195442.
-
32)
-
32. Stauber, T., Peres, N.M.R., Guinea, F.: ‘Electronic transport in graphene: A semiclassical approach including midgap states’, Phys. Rev. B, 2007, 76, (20), p. 205423, .
-
33)
-
33. Rakheja, S., Wu, Y., Wang, H., et al: ‘An ambipolar virtual-source-based charge-current compact model for nanoscale graphene transistors’, IEEE Trans. Nanotechnol., 2014, 13, (5), pp. 1005–1013, .
-
34)
-
34. Gomez-Diaz, J.S., Perruisseau-Carrier, J.: ‘A transmission line model for plasmon propagation on a graphene strip’. Microwave Symp. Digest (IMS), 2013 IEEE MTT-S Int., 2013, pp. 1–3.
-
35)
-
35. Correas-Serrano, D., Gomez-Diaz, J.S., Perruisseau-Carrier, J., et al: ‘Spatially dispersive graphene single and parallel plate waveguides: analysis and circuit model’, IEEE Trans. Microw. Theory Tech., 2013, 61, (12), pp. 4333–4344.
-
36)
-
36. Manipatruni, S., Lipson, M., Young, I.A.: ‘Device scaling considerations for nanophotonic cmos global interconnects’, IEEE J. Sel. Top. Quantum Electron., 2013, 19, (2), pp. 8200109–8200109.
-
37)
-
37. Rakheja, S., Kumar, V.: ‘Comparison of electrical, optical and plasmonic on-chip interconnects based on delay and energy considerations’. 2012 13th Int. Symp. Quality Electronic Design (ISQED), 2012, pp. 732–739.
-
38)
-
38. Koppens, F.H.L., Mueller, T., Avouris, P., et al: ‘Photodetectors based on graphene, other two-dimensional materials and hybrid systems’, Nat. Nanotechnol., 2014, 9, (10), pp. 780–793.
-
39)
-
39. Peters, E.C., Lee, E.J.H., Burghard, M., et al: ‘Gate dependent photocurrents at a graphene pn junction’, Appl. Phys. Lett., 2010, 97, (19), p. 193102.
-
40)
-
40. Tielrooij, K.-J., Song, J.C.W., Jensen, S.A., et al: ‘Photoexcitation cascade and multiple hot-carrier generation in graphene’, Nat. Phys., 2013, 9, (4), pp. 248–252.
-
41)
-
41. Tomadin, A., Polini, M.: ‘Theory of the plasma-wave photoresponse of a gated graphene sheet’, Phys. Rev. B, 2013, 88, (20), p. 205426.
-
42)
-
42. Dyakonov, M.I., Shur, M.S.: ‘Plasma wave electronics: novel terahertz devices using two dimensional electron fluid’, IEEE Trans. Electron Devices, 1996, 43, (10), pp. 1640–1645.
-
43)
-
43. Dyakonov, M., Shur, M.: ‘Detection, mixing, and frequency multiplication of terahertz radiation by two-dimensional electronic fluid’, IEEE Trans. Electron Devices, 1996, 43, (3), pp. 380–387.
-
44)
-
44. Sun, Z., Martinez, A., Wang, F.: ‘Optical modulators with 2d layered materials’, Nature Photonics, 2016, 10, (4), pp. 227–238.
-
45)
-
45. Gosciniak, J., Tan, D.T.H.: ‘Theoretical investigation of graphene-based photonic modulators’, Sci. Rep., 2013, 3, p. 1897.
-
46)
-
46. Liang, G., Hu, X., Yu, X., et al: ‘Integrated terahertz graphene modulator with 100% modulation depth’, ACS Photonics, 2015, 2, (11), pp. 1559–1566.
-
47)
-
47. Beausoleil, R.G., Kuekes, P.J., Snider, G.S., et al: ‘Nanoelectronic and nanophotonic interconnect’, Proc. IEEE, 2008, 96, (2), pp. 230–247.
-
48)
-
48. Miller, D.A.B.: ‘Device requirements for optical interconnects to silicon chips’, Proc. IEEE, 2009, 97, (7), pp. 1166–1185.
-
49)
-
49. Miller, D.A.B.: ‘Energy consumption in optical modulators for interconnects’, Opt. Express, 2012, 20, (102), pp. A293–A308.
-
50)
-
50. Orfanidis, S.J.: ‘Electromagnetic waves and antennas’, 2008, .
-
51)
-
51. Rakheja, S.: ‘On the Gaussian pulse propagation through multilayer graphene plasmonic waveguides – impact of electrostatic screening and frequency dispersion on group velocity and pulse distortion’, IEEE Trans. Nanotechnol., 2016, 15, (6), pp. 936–946.
-
52)
-
52. Ceyhan, A., Naeemi, A.: ‘Overview of the interconnect problem’, in Todri-Sanial, Aida, Dijon, Jean, Maffuci, Antonio (Ed.): ‘Carbon nanotubes for interconnects’ (Springer, Switzerland, 2017), pp. 3–36.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cps.2017.0073
Related content
content/journals/10.1049/iet-cps.2017.0073
pub_keyword,iet_inspecKeyword,pub_concept
6
6