Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon openaccess Terahertz band communication using plasma wave propagation in multilayer graphene heterostructures

Graphene-based heterostructures provide a viable platform to implement optoelectronic devices that can operate in the terahertz (THz) band. In this study, the authors focus on multilayer (ML) graphene as the building block to implement high-frequency and low-energy plasmonic interconnects for on-chip signalling in next-generation systems. Two specific plasmonic interconnect geometries are analysed: single waveguide (SWG) and parallel-plate waveguide (PPWG). While SWG interconnects support propagating surface plasmons that are polarised in the transverse magnetic direction, in PPWG interconnects, nearly dispersion-less quasi-transverse electromagnetic modes are supported. The dispersion characteristics are derived by solving Maxwell's equations in the device setup in which ML graphene presents an impedance boundary condition. The effects of number of layers, electrostatic screening, and Fermi level are included in the model of intra-band dynamical surface conductivity of ML graphene. The authors also develop analytical models of energy-per-bit and bandwidth density for both SWG and PPWG interconnects. The energy dissipation includes the effect of plasmon generation, detection, and modulation circuitry within a thermal- and shot-noise-limited transmission of information. They quantify optimal interconnect length scales for which plasmonic interconnects provide lower energy and higher bandwidth when compared against their electrical (copper/low-κ) counterparts at the 2020 ITRS technology node.

References

    1. 1)
      • 32. Stauber, T., Peres, N.M.R., Guinea, F.: ‘Electronic transport in graphene: A semiclassical approach including midgap states’, Phys. Rev. B, 2007, 76, (20), p. 205423, doi: 10.1103/PhysRevB.76.205423.
    2. 2)
      • 15. Yan, H., Li, X., Chandra, B., et al: ‘Tunable infrared plasmonic devices using graphene/insulator stacks’, Nat. Nanotechnol., 2012, 7, (5), pp. 330334, available at http://dx.doi.org/10.1038/nnano.2012.59.
    3. 3)
      • 21. Ryzhii, V.: ‘Terahertz plasma waves in gated graphene heterostructures’, Jpn. J. Appl. Phys., 2006, 45, (35), pp. L923L925.
    4. 4)
      • 34. Gomez-Diaz, J.S., Perruisseau-Carrier, J.: ‘A transmission line model for plasmon propagation on a graphene strip’. Microwave Symp. Digest (IMS), 2013 IEEE MTT-S Int., 2013, pp. 13.
    5. 5)
      • 22. Ryzhii, V., Satou, A., Otsuji, T.: ‘Plasma waves in two-dimensional electron–hole system in gated graphene heterostructures’, J. Appl. Phys., 2007, 101, (2), p. 024509, doi: http://dx.doi.org/10.1063/1.2426904.
    6. 6)
      • 30. Sui, Y., Appenzeller, J.: ‘Screening and interlayer coupling in multilayer graphene field-effect transistors’, Nano Lett., 2009, 9, (8), pp. 29732977.
    7. 7)
      • 7. Prasad, D., Ceyhan, A., Pan, C., et al: ‘Adapting interconnect technology to multigate transistors for optimum performance’, IEEE Trans. Electron Devices, 2015, 62, (12), pp. 39383944.
    8. 8)
      • 26. Faugeras, C., Nerrière, A., Potemski, M., et al: ‘Few-layer graphene on sic, pyrolitic graphite, and graphene: a Raman scattering study’, Appl. Phys. Lett., 2008, 92, (1), p. 011914.
    9. 9)
      • 12. Akyildiz, I.F., Jornet, J.M., Han, C.: ‘Terahertz band: next frontier for wireless communications’, Phys. Commun., 2014, 12, pp. 1632.
    10. 10)
      • 10. Miller, D.A.B., Ozaktas, H.M.: ‘Limit to the bit-rate capacity of electrical interconnects from the aspect ratio of the system architecture’, J. Parallel Distrib. Comput., 1997, 41, (1), pp. 4252.
    11. 11)
      • 24. Rakheja, S., Sengupta, P.: ‘Gate-voltage tunability of plasmons in single-layer graphene structures – analytical description, impact of interface states, and concepts for terahertz devices’, IEEE Trans. Nanotechnol., 2016, 15, (1), pp. 113121.
    12. 12)
      • 3. Markov, I.L.: ‘Limits on fundamental limits to computation’, Nature, 2014, 512, (7513), pp. 147154.
    13. 13)
      • 20. Gan, C.H., Chu, H.S., Li, E.P.: ‘Synthesis of highly confined surface plasmon modes with doped graphene sheets in the midinfrared and terahertz frequencies’, Phys. Rev. B, 2012, 85, (12), p. 125431.
    14. 14)
      • 33. Rakheja, S., Wu, Y., Wang, H., et al: ‘An ambipolar virtual-source-based charge-current compact model for nanoscale graphene transistors’, IEEE Trans. Nanotechnol., 2014, 13, (5), pp. 10051013, ISSN 1536-125X, doi: 10.1109/TNANO.2014.2344437.
    15. 15)
      • 17. Luo, X., Qiu, T., Lu, W., et al: ‘Plasmons in graphene: recent progress and applications’, Mater. Sci, Eng. R, Rep., 2013, 74, (11), pp. 351376, doi: http://dx.doi.org/10.1016/j.mser.2013.09.001.
    16. 16)
      • 28. Rakheja, S.: ‘Communication limits of on-chip graphene plasmonic interconnects’. 2017 18th Int. Symp. Quality Electronic Design (ISQED), 2017, pp. 4551.
    17. 17)
      • 44. Sun, Z., Martinez, A., Wang, F.: ‘Optical modulators with 2d layered materials’, Nature Photonics, 2016, 10, (4), pp. 227238.
    18. 18)
      • 36. Manipatruni, S., Lipson, M., Young, I.A.: ‘Device scaling considerations for nanophotonic cmos global interconnects’, IEEE J. Sel. Top. Quantum Electron., 2013, 19, (2), pp. 82001098200109.
    19. 19)
      • 18. Jablan, M., Buljan, H., Soljačić, M.: ‘Plasmonics in graphene at infrared frequencies’, Phys. Rev. B, 2009, 80, (24), p. 245435.
    20. 20)
      • 9. Kumar, V.: ‘Modeling and optimization approaches for benchmarking emerging on-chip and off-chip interconnect technologies’. PhD thesis, Georgia Institute of Technology, 2014.
    21. 21)
      • 25. ITRS: ‘The international technology roadmap for semiconductors’, available at www.itrs2.net.
    22. 22)
      • 31. Perebeinos, V., Avouris, P.: ‘Inelastic scattering and current saturation in graphene’, Phys. Rev. B, 2010, 81, (19), p. 195442.
    23. 23)
      • 43. Dyakonov, M., Shur, M.: ‘Detection, mixing, and frequency multiplication of terahertz radiation by two-dimensional electronic fluid’, IEEE Trans. Electron Devices, 1996, 43, (3), pp. 380387.
    24. 24)
      • 5. Chen, J.: ‘Self-calibrating on-chip interconnects’. PhD thesis, Stanford University, 2012.
    25. 25)
      • 16. Kumada, N., Tanabe, S., Hibino, H., et al: ‘Plasmon transport in graphene investigated by time-resolved electrical measurements’, Nat. Commun., 2013, 4, p. 1363, available at http://dx.doi.org/10.1038/ncomms2353.
    26. 26)
      • 45. Gosciniak, J., Tan, D.T.H.: ‘Theoretical investigation of graphene-based photonic modulators’, Sci. Rep., 2013, 3, p. 1897.
    27. 27)
      • 39. Peters, E.C., Lee, E.J.H., Burghard, M., et al: ‘Gate dependent photocurrents at a graphene pn junction’, Appl. Phys. Lett., 2010, 97, (19), p. 193102.
    28. 28)
      • 46. Liang, G., Hu, X., Yu, X., et al: ‘Integrated terahertz graphene modulator with 100% modulation depth’, ACS Photonics, 2015, 2, (11), pp. 15591566.
    29. 29)
      • 47. Beausoleil, R.G., Kuekes, P.J., Snider, G.S., et al: ‘Nanoelectronic and nanophotonic interconnect’, Proc. IEEE, 2008, 96, (2), pp. 230247.
    30. 30)
      • 6. Ceyhan, A., Naeemi, A.: ‘Cu interconnect limitations and opportunities for swnt interconnects at the end of the roadmap’, IEEE Trans. Electron Devices, 2013, 60, (1), pp. 374382.
    31. 31)
      • 52. Ceyhan, A., Naeemi, A.: ‘Overview of the interconnect problem’, in Todri-Sanial, Aida, Dijon, Jean, Maffuci, Antonio (Ed.): ‘Carbon nanotubes for interconnects’ (Springer, Switzerland, 2017), pp. 336.
    32. 32)
      • 29. Falkovsky, L.A.: ‘Optical properties of graphene’, J. Phys., Conf. Ser., 2008, 129, (1), p. 012004.
    33. 33)
      • 27. Reina, A., Jia, X., Ho, J., et al: ‘Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition’, Nano Lett., 2008, 9, (1), pp. 3035.
    34. 34)
      • 2. Cumming, D.R.S., Furber, S.B., Paul, D.J.: ‘Beyond moore's law’, Philos. Trans. R. Soc. Lond. A, Math. Phys. Eng. Sci., 2014, 372, (2012), p. 20130376.
    35. 35)
      • 13. Blake, P.: ‘Making graphene visible’, Appl. Phys. Lett., 2007, 91, p. 063124, doi: 10.1063/1.2768624.
    36. 36)
      • 41. Tomadin, A., Polini, M.: ‘Theory of the plasma-wave photoresponse of a gated graphene sheet’, Phys. Rev. B, 2013, 88, (20), p. 205426.
    37. 37)
      • 23. Sensale-Rodriguez, B., Yan, R., Liu, L., et al: ‘Graphene for reconfigurable terahertz optoelectronics’, Proc. IEEE, 2013, 101, (7), pp. 17051716, ISSN 0018-9219, doi: 10.1109/JPROC.2013.2250471.
    38. 38)
      • 11. Jornet, J.M., Akyildiz, I.F.: ‘Fundamentals of electromagnetic nanonetworks in the terahertz band’, Found. Trends Netw., 2013, 7, (2-3), pp. 77233, ISSN 1554-057X, doi: 10.1561/1300000045, available at http://dx.doi.org/10.1561/1300000045.
    39. 39)
      • 40. Tielrooij, K.-J., Song, J.C.W., Jensen, S.A., et al: ‘Photoexcitation cascade and multiple hot-carrier generation in graphene’, Nat. Phys., 2013, 9, (4), pp. 248252.
    40. 40)
      • 4. Meindl, J.D., Chen, Q., Davis, J.A.: ‘Limits on silicon nanoelectronics for terascale integration’, Science, 2001, 293, (5537), pp. 20442049.
    41. 41)
      • 38. Koppens, F.H.L., Mueller, T., Avouris, P., et al: ‘Photodetectors based on graphene, other two-dimensional materials and hybrid systems’, Nat. Nanotechnol., 2014, 9, (10), pp. 780793.
    42. 42)
      • 50. Orfanidis, S.J.: ‘Electromagnetic waves and antennas’, 2008, Unpublished, available at http://www.ece.rutgers.edu/orfanidi/ewa, 2004.
    43. 43)
      • 42. Dyakonov, M.I., Shur, M.S.: ‘Plasma wave electronics: novel terahertz devices using two dimensional electron fluid’, IEEE Trans. Electron Devices, 1996, 43, (10), pp. 16401645.
    44. 44)
      • 51. Rakheja, S.: ‘On the Gaussian pulse propagation through multilayer graphene plasmonic waveguides – impact of electrostatic screening and frequency dispersion on group velocity and pulse distortion’, IEEE Trans. Nanotechnol., 2016, 15, (6), pp. 936946.
    45. 45)
      • 49. Miller, D.A.B.: ‘Energy consumption in optical modulators for interconnects’, Opt. Express, 2012, 20, (102), pp. A293A308.
    46. 46)
      • 35. Correas-Serrano, D., Gomez-Diaz, J.S., Perruisseau-Carrier, J., et al: ‘Spatially dispersive graphene single and parallel plate waveguides: analysis and circuit model’, IEEE Trans. Microw. Theory Tech., 2013, 61, (12), pp. 43334344.
    47. 47)
      • 14. Xia, F., Mueller, T., Lin, Y.-M., et al: ‘Ultrafast graphene photodetector’, Nat. Nanotechnol., 2009, 4, (12), pp. 839843, available at http://dx.doi.org/10.1038/nnano.2009.292.
    48. 48)
      • 19. Hanson, G.W.: ‘Quasi-transverse electromagnetic modes supported by a graphene parallel-plate waveguide’, J. Appl. Phys., 2008, 104, (8), p. 084314.
    49. 49)
      • 37. Rakheja, S., Kumar, V.: ‘Comparison of electrical, optical and plasmonic on-chip interconnects based on delay and energy considerations’. 2012 13th Int. Symp. Quality Electronic Design (ISQED), 2012, pp. 732739.
    50. 50)
      • 48. Miller, D.A.B.: ‘Device requirements for optical interconnects to silicon chips’, Proc. IEEE, 2009, 97, (7), pp. 11661185.
    51. 51)
      • 8. Kumar, V., Bashirullah, R., Naeemi, A.: ‘Modeling, optimization and benchmarking of chip-to-chip electrical interconnects with low loss air-clad dielectrics’. IEEE 61st Electronic Components and Technology Conf. (ECTC), 2011, 2011, pp. 20842090.
    52. 52)
      • 1. Cavin, R.K., Lugli, P., Zhirnov, V.V.: ‘Science and engineering beyond moore's law’, Proc. IEEE, 2012, 100, pp. 17201749(Special Centennial Issue).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cps.2017.0073
Loading

Related content

content/journals/10.1049/iet-cps.2017.0073
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address