http://iet.metastore.ingenta.com
1887

access icon openaccess Discrete-level memristive circuits for HTM-based spatiotemporal data classification system

  • HTML
    189.404296875Kb
  • PDF
    3.12899112701416MB
  • XML
    173.0263671875Kb
Loading full text...

Full text loading...

/deliver/fulltext/iet-cps/3/1/IET-CPS.2017.0053.html;jsessionid=450s4ofvaonhm.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fiet-cps.2017.0053&mimeType=html&fmt=ahah

References

    1. 1)
      • 1. Dubois, J., Mattavelli, M.: ‘Embedded co-processor architecture for CMOS based image acquisition’. Proc. 2003 Int. Conf. on Image Processing 2003 ICIP 2003, 2003, vol. 2, p. II591.
    2. 2)
      • 2. Rojas, R.: ‘Neural networks: a systematic introduction’ (Springer Science & Business Media, 2013).
    3. 3)
      • 3. Fujita, O., Amemiya, Y.: ‘A floating-gate analog memory device for neural networks’, IEEE Trans. Electron Devices, 1993, 40, (11), pp. 20292035.
    4. 4)
      • 4. Haller, G.M., Wooley, B.A.: ‘An analog memory integrated circuit for waveform acquisition up to 900 MHz’. 1993 IEEE Nuclear Science Symp. Medical Imaging Conf., San Francisco, CA, 2–5 November 1993, vol. 1, pp. 25.
    5. 5)
      • 5. O'Halloran, M., Sarpeshkar, R.: ‘A 10 nW 12 bit accurate analog storage cell with 10 aa leakage’, IEEE J. Solid-State Circuits, 2004, 39, (11), pp. 19851996.
    6. 6)
      • 6. Diorio, C., Mahajan, S., Hasler, P., et al: ‘A high-resolution non-volatile analog memory cell’. 1995 IEEE Int. Symp. Circuits and Systems 1995 ISCAS'95, 1995, vol. 3, pp. 22332236.
    7. 7)
      • 7. Chen, Y., Jung, G.-Y., Ohlberg, D.A.A., et al: ‘Nanoscale molecular-switch crossbar circuits’, Nanotechnology, 2003, 14, (4), p. 462.
    8. 8)
      • 8. Hu, X.F., Duan, S.K., Wang, L.D., et al: ‘Memristive crossbar array with applications in image processing’, Sci. China Inf. Sci., 2012, 55, (2), pp. 461472.
    9. 9)
      • 9. Duan, S.K., Hu, X.F., Wang, L.D., et al: ‘Analog memristive memory with applications in audio signal processing’, Sci. China Inf. Sci., 2014, 57, (4), pp. 115.
    10. 10)
      • 10. Rabbani, P., Dehghani, R., Shahpari, N.: ‘A multilevel memristor–CMOS memory cell as an ReRAM’, Microelectron. J., 2015, 46, (12), pp. 12831290.
    11. 11)
      • 11. James, A.P., Fedorova, I., Ibrayev, T., et al: ‘HTM spatial pooler with memristor crossbar circuits for sparse biometric recognition’, IEEE Trans. Biomed. Circuits Syst., 2017, PP, (99), pp. 112.
    12. 12)
      • 12. Anderson, J.A., Rosenfeld, E.: ‘Talking nets: an oral history of neural networks’ (MIT Press, 2000).
    13. 13)
      • 13. Angell, J.B., Widrow, B., Pierce, W.H.: ‘Birth, life, and death in microelectronic’. Technical Report No. 1552-2/1851-1, May 1961.
    14. 14)
      • 14. Hasler, P., Minch, B., Mead, C., et al: ‘A high-resolution nonvolatile analog memory cell’. Proc. 1995 IEEE Int. Symp. Circuits and Systems, 1995, vol. 3, pp. 22332236.
    15. 15)
      • 15. Lee, B.W., Sheu, B.J., Yang, H.: ‘Analog floating-gate synapses for general-purpose VLSI neural computation’, IEEE Trans. Circuits Syst., 1991, 38, (6), pp. 654658.
    16. 16)
      • 16. Lee, S.-K., Park, D.-H.: ‘Multi level flash memory device and program method’. US Patent 7,054,199, May 2006.
    17. 17)
      • 17. Lee, J.-W.S.: ‘Multilevel phase change memory’. US Patent 7,488,968, 10 February 2009.
    18. 18)
      • 18. Khan, S.: ‘The divided flash memory device for implementing neurons and neural networks’. , 2013 Int. Conf. Informatics, Electronics & Vision (ICIEV), 2013, pp. 15.
    19. 19)
      • 19. Strukov, D., Merrikh-Bayat, F., Prezioso, M., et al: ‘Memory technologies for neural networks’. 2015 IEEE Int. Memory Workshop (IMW), 2015, pp. 14.
    20. 20)
      • 20. Simpson, R.E., Fons, P., Kolobov, A.V., et al: ‘Interfacial phase-change memory’, Nat. Nanotechnol., 2011, 6, (8), pp. 501505.
    21. 21)
      • 21. Lee, B.C., Zhou, P., Yang, J., et al: ‘Phase-change technology and the future of main memory’, IEEE Micro, 2010, 30, (1), pp. 131141.
    22. 22)
      • 22. Eryilmaz, S.B., Kuzum, D., Jeyasingh, R., et al: ‘Brain-like associative learning using a nanoscale non-volatile phase change synaptic device array’, arXiv preprint arXiv:1406.4951, 2014.
    23. 23)
      • 23. Chua, L.: ‘Memristor – the missing circuit element’, IEEE Trans. Circuit Theory, 1971, 18, (5), pp. 507519.
    24. 24)
      • 24. Mostafa, H., Ismail, Y.: ‘Process variation aware design of multi-valued spintronic memristor-based memory arrays’, IEEE Trans. Semicond. Manuf., 2016, 29, (2), pp. 145152.
    25. 25)
      • 25. Kannan, S., Karimi, N., Karri, R., et al: ‘Modeling, detection, and diagnosis of faults in multilevel memristor memories’, IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., 2015, 34, (5), pp. 822834.
    26. 26)
      • 26. Maan, A.K., Jayadevi, D.A., James, A.P.: ‘A survey of memristive threshold logic circuits’, IEEE Trans. Neural Netw. Learn. Syst., 2016, PP, (99), pp. 113.
    27. 27)
      • 27. Versace, M., Chandler, B.: ‘The brain of a new machine’, IEEE Spectr., 2010, 47, (12), pp. 3037.
    28. 28)
      • 28. George, D., Hawkins, J.: ‘A hierarchical Bayesian model of invariant pattern recognition in the visual cortex’.  Proc. 2005 IEEE Int. Joint Conf. Neural Networks, 2005 IJCNN ‘05, July 2005, vol. 3, pp. 18121817.
    29. 29)
      • 29. Hawkins, J., Blakeslee, S.: ‘On intelligence’ (Macmillan, 2007).
    30. 30)
      • 30. Hawkins, J., Ahmad, S., Dubinsky, D.: ‘Hierarchical temporal memory including HTM cortical learning algorithms’. Technical Report, Numenta, Inc., Palto Alto, 2010. Available at http://www.numenta.com/htmoverview/education/HTM_CorticalLearningAlgorithms.pdf, accessed 16/03/2017.
    31. 31)
      • 31. Hawkins, J., Ahmad, S., Purdy, S., et al: ‘Biological and machine intelligence (BAMI)’, Initial online release 0.4, 2016.
    32. 32)
      • 32. Stanley Williams, R.: ‘How we found the missing memristor’, IEEE Spectr., 2008, 45, (12), pp. 2835.
    33. 33)
      • 33. Biolek, D., Kolka, Z., Biolkova, V., et al: ‘Memristor models for spice simulation of extremely large memristive networks’. 2016 IEEE Int. Symp. Circuits and Systems (ISCAS), 2016, pp. 389392.
    34. 34)
      • 34. Pickett, M.D., Strukov, D.B., Borghetti, J.L., et al: ‘Switching dynamics in titanium dioxide memristive devices’, J. Appl. Phys., 2009, 106, (7), p. 074508.
    35. 35)
      • 35. Rose, G.S.: ‘Overview: memristive devices, circuits and systems’. Proc. 2010 IEEE Int. Symp. Circuits and Systems (ISCAS), 2010, pp. 19551958.
    36. 36)
      • 36. Kim, H., Sah, M.P., Yang, C., et al: ‘Memristor based multilevel memory’. 2010 12th Int. Workshop on Cellular Nanoscale Networks and their Applications (CNNA 2010), 2010, pp. 16.
    37. 37)
      • 37. Manem, H., Rose, G.S., He, X., et al: ‘Design considerations for variation tolerant multilevel CMOS/nano memristor memory’. Proc. 20th Symp. Great lakes Symp. VLSI, 2010, pp. 287292.
    38. 38)
      • 38. Manem, H., Rose, G.S.: ‘A read-monitored write circuit for 1T1M multi-level memristor memories’. 2011 IEEE Int. Symp. Circuits and systems (ISCAS), 2011, pp. 29382941.
    39. 39)
      • 39. Duarte, J.C., Martins, E.V., Alves, L.N.: ‘Frequency characterization of memristive devices’. 2013 European Conf. Circuit Theory and Design (ECCTD), 2013, pp. 14.
    40. 40)
      • 40. Hpl.hp.com HP Memristor FAQ.
    41. 41)
      • 41. Zyarah, A.M.: ‘Design and analysis of a reconfigurable hierarchical temporal memory architecture’. Master's thesis, 2015.
    42. 42)
      • 42. Mnatzaganian, J., Fokoué, E., Kudithipudi, D.: ‘A mathematical formalization of hierarchical temporal memory's spatial pooler’, arXiv preprint arXiv:1601.06116, 2016.
    43. 43)
      • 43. Farahmand, N., Dezfoulian, M.H., GhiasiRad, H., et al: ‘Online temporal pattern learning’. 2009 Int. Joint Conf. Neural Networks, June 2009, pp. 797802.
    44. 44)
      • 44. Ramli, I., Ortega-Sanchez, C.: ‘Pattern recognition using hierarchical concatenation’. 2015 Int. Conf. Computer, Control, Informatics and its Applications (IC3INA), October 2015, pp. 109113.
    45. 45)
      • 45. Csapo, A.B., Baranyi, P., Tikk, D.: ‘Object categorization using VFA-generated nodemaps and hierarchical temporal memories’. IEEE Int. Conf. Computational Cybernetics 2007 ICCC 2007, October 2007, pp. 257262.
    46. 46)
      • 46. Melis, W.J.C., Chizuwa, S., Kameyama, M.: ‘Evaluation of the hierarchical temporal memory as soft computing platform and its VLSI architecture’. 39th Int. Symp. Multiple-Valued Logic, 2009, pp. 233238.
    47. 47)
      • 47. Fan, D., Sharad, M., Sengupta, A., et al: ‘Hierarchical temporal memory based on spin-neurons and resistive memory for energy-efficient brain-inspired computing’, IEEE Trans. Neural Netw. Learn. Syst., 2016, 27, (9), pp. 19071919.
    48. 48)
      • 48. Ibrayev, T., James, A.P., Merkel, C., et al: ‘A design of HTM spatial pooler for face recognition using memristor–CMOS hybrid circuits’. 2016 IEEE Int. Symp. Circuits and Systems (ISCAS), May 2016, pp. 12541257.
    49. 49)
      • 49. Cui, Y., Ahmad, S., Hawkins, J.: ‘The HTM spatial pooler: a neo cortical algorithm for online sparse distributed coding’, bioRxiv, 2017, p. 085035.
    50. 50)
      • 50. Numenta Inc.: ‘Hierarchical temporal memory including HTM cortical learning algorithms’. Technical Report, 2006.
    51. 51)
      • 51. Cui, Y., Ahmad, S., Hawkins, J.: ‘Continuous online sequence learning with an unsupervised neural network model’, Neural Comput., 2016, (28), pp. 24742504.
    52. 52)
      • 52. Martınez, A., Benavente, R.: ‘The AR face database’. Rapport Technique 24, 1998.
    53. 53)
      • 53. Samaria, F.S., Harter, A.C.: ‘Parameterisation of a stochastic model for human face identification’. Proc. Second IEEE Workshop on Applications of Computer Vision 1994, 1994, pp. 138142.
    54. 54)
      • 54. Lenc, L., Král, P.: ‘Unconstrained facial images: database for face recognition under real-world conditions’. 14th Mexican Int. Conf. Artificial Intelligence (MICAI 2015), Cuernavaca, Mexico, 25–31 October 2015.
    55. 55)
      • 55. Garofolo, J.S., Lamel, L.F., Fisher, W.M., et al: ‘DARPA TIMIT acoustic–phonetic continuous speech corpus CD-ROM. nist speech disc 1-1.1’. NASA STI/Recon Technical Report N 93, 1993.
    56. 56)
      • 56. Ellis, D.P.W.: PLP and RASTA (and MFCC, and inversion) in MATLAB, 2005.
    57. 57)
      • 57. Hermansky, H., Morgan, N.: ‘Rasta processing of speech’, IEEE Trans. Speech Audio Process., 1994, 2, (4), pp. 578589.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cps.2017.0053
Loading

Related content

content/journals/10.1049/iet-cps.2017.0053
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address