© The Institution of Engineering and Technology
The maximum likelihood detection problem in many underdetermined linear communications systems can be described as an underdetermined integer least squares (ILS) problem. To solve it efficiently, a partial regularisation approach is proposed. The original underdetermined ILS problem is first transformed to an equivalent overdetermined ILS problem by using part of the transmit vector to do the regularisation. Then the overdetermined ILS problem is solved by conventional sphere decoding algorithms. Simulation results indicate that this approach can be much more efficient than other approaches for any square constellation higher than 4QAM.
References


1)

E. Viterbo ,
J. Boutros
.
A universal lattice code decoder for fading channel.
IEEE Trans. Inf. Theory
,
1639 
1642

2)

M.O. Damen ,
A. Chkeif ,
J.C. Belfiore
.
Lattice code decoder for spacetime codes.
IEEE Commun. Lett.
,
5 ,
161 
163

3)

L. Brunel ,
J.J. Boutros
.
Lattice decoding for joint detection in directsequence CDMA systems.
IEEE Trans. Inf. Theory
,
4 ,
1030 
1037

4)

L. Brunel
.
Multiuser detection techniques using maximum likelihood sphere decoding in multicarrier CDMA systems.
IEEE Trans. Wirel. Commun.
,
3 ,
949 
957

5)

A.D. Murguan ,
H. El Gamal ,
M. Damen ,
G. Caire
.
A unified framework for tree search decoding: rediscovering the sequential decoder.
IEEE Trans. Inf. Theory
,
3 ,
933 
953

6)

M.O. Damen ,
H. El Gamal ,
G. Caire
.
On maximumlikelihood detection and the search for the closest lattice point.
IEEE Trans. Inf. Theory
,
10 ,
2389 
2402

7)

H. Vikalo ,
B. Hassibi ,
T. Kailath
.
Iterative decoding for MIMO channels via modified sphere decoding.
IEEE Trans. Wirel. Commun.
,
6 ,
2299 
2311

8)

X.W. Chang ,
Q. Han
.
Solving boxconstrained integer least squares problems.
IEEE Trans. Wirel. Commun.
,
277 
287

9)

M. Damen ,
K. AbedMeraim ,
J. Belfiore
.
Generalized sphere decoder for asymmetrical spacetime communication architecture.
Electron. Lett.
,
166 
167

10)

Dayal, P., Varanasi, M.: `A fast generalized sphere decoder for optimum decoding of underdetermined MIMO systems', Proc. 41st Annu. Allerton Conf. Communication, Control, and Computing, October 2003, Monticello, IL, p. 1216–1225.

11)

Z. Yang ,
C. Liu ,
J. He
.
A new approach for fast generalized sphere decoding in MIMO systems.
IEEE Signal Process Lett.
,
1 ,
41 
44

12)

Chang, X.W., Yang, X.: `A new fast generalized sphere decoding algorithm for underdetermined MIMO systems', Proc. 23rd Queen's Biennial Symp. Communications, 2006, Kingston, CA, p. 18–21.

13)

T. Cui ,
C. Tellambura
.
An efficient generalized sphere decoder for rankdeficient MIMO systems.
IEEE Commun. Lett.
,
423 
425

14)

Damen, M., El Gamel, H., Caire, G.: `MMSEGDFE lattice decoding for solving underdetermined linear systems with integer unknowns', Proc. IEEE Int. Symp. Inform. Theory, June–July 2004, Chicago, USA.

15)

Wang, P., LeNgoc, T.: `A low complexity generalized sphere decoding approach for underdetermined MIMO systems', Proc. IEEE Int. Conf. Communications, June 2006, p. 4266–4271.

16)

T.H. Cormen ,
C.E. Leiserson ,
R.L. Rivest ,
C. Stein
.
(2009)
Introduction to algorithms.

17)

E. Agrell ,
Eriksson ,
A. Vardy ,
K. Zeger
.
Closest point search in lattices.
IEEE Trans. Inf. Theory
,
2201 
2214

18)

Wang, P., LeNgoc, T.: `An efficient multiuser detection scheme for overloaded grouporthogonal MCCDMA systems', IEEE ISWPC07, February 2007, p. 280–284.

19)

Erceg, V., Hari, K., Smith, M.S.: `Channel models for fixed wireless applications', IEEE 802.16.3c01/29r4, July 2001.

20)

B. Natarajan ,
Z. Wu ,
C.R. Nassar ,
S. Shattil
.
Large set of CI spreading codes for highcapacity MCCDMA.
IEEE Trans. Commun.
,
11 ,
1862 
1866

21)

G.H. Golub ,
C.F. Van Loan
.
(1989)
Matrix computations.
http://iet.metastore.ingenta.com/content/journals/10.1049/ietcom_20080210
Related content
content/journals/10.1049/ietcom_20080210
pub_keyword,iet_inspecKeyword,pub_concept
6
6