http://iet.metastore.ingenta.com
1887

Improved parallel weighted bit-flipping decoding algorithm for LDPC codes

Improved parallel weighted bit-flipping decoding algorithm for LDPC codes

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Communications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Aiming at seeking a low-complexity decoder with fast decoding convergence speed for short or medium low-density parity-check (LDPC) codes, an improved parallel weighted bit-flipping (IPWBF) algorithm, which is applied flexibly for two classes of codes is presented here. For LDPC codes with low column weight in their parity check matrix, both bootstrapping and loop detection procedures, described in the existing literature, are included in IPWBF. Furthermore, a novel delay-handling procedure is introduced to prevent the codeword bits of high reliability from being flipped too hastily. For large column weight finite geometry LDPC codes, only the delay-handling procedure is included in IPWBF to show its effectiveness. Extensive simulation results demonstrate that the proposed algorithm achieves a good tradeoff between performance and complexity.

References

    1. 1)
      • M.P.C. Fossorier , M. Mihaljevic , H. Imai . Reduced complexity iterative decoding of low-density parity check codesbased on belief propagation. IEEE Trans. Commun. , 5 , 673 - 680
    2. 2)
      • J. Chen , A. Dholakia , E. Eleftheriou , M.P.C. Fossorier , X.Y. Hu . Reduced-complexity decoding of LDPC codes. IEEE Trans. Commun. , 8 , 1288 - 1299
    3. 3)
      • R.G. Gallager . Low-density parity-check codes. IEEE Trans. Inf. Theory , 1 , 21 - 28
    4. 4)
      • Miladinovic, N., Fossorier, M.: `Improved bit flipping decoding of low-density parity check codes', Proc. 2002 IEEE Inte. Symp. on Information Theory, 2002.
    5. 5)
      • N. Miladinovic , M. Fossorier . Improved bit-flipping decoding of low-density parity-check codes. IEEE Trans. Inf. Theory , 4 , 1594 - 1606
    6. 6)
      • Ngatched, T., Bossert, M., Fahrner, A.: `Two decoding algorithms for low-density parity-check codes', IEEE Int. Conf. on Communications, ICC 2005, 2005, 1.
    7. 7)
      • Y. Kou , S. Lin , M. Fossorier . Low-density parity-check codes based on finite geometries: are discovery and new results. IEEE Trans. Inf. Theory , 7 , 2711 - 2736
    8. 8)
      • J. Zhang , M. Fossorier . A modified weighted bit-flipping decoding of low-density parity-check codes. IEEE Commun. Lett. , 3
    9. 9)
      • M. Jiang , C. Zhao , Z. Shi , Y. Chen . An improvement on the modified weighted bit flipping decoding algorithm for LDPC codes. IEEE Commun. Lett. , 9 , 814 - 816
    10. 10)
      • A. Nouh , A. Banihashemi . Bootstrap decoding of low-density parity-check codes. IEEE Commun. Lett. , 9 , 391 - 393
    11. 11)
      • Z. Liu , D. Pados . A decoding algorithm for finite-geometry LDPC codes. IEEE Trans. Commun. , 3 , 415 - 421
    12. 12)
      • M. Shan , C. Zhao , M. Jiang . Improved weighted bit-flipping algorithm for decoding LDPC codes. IEE Proc. Commun. , 6 , 919 - 922
    13. 13)
      • F. Guo , L. Hanzo . Reliability ratio based weighted bit-flipping decoding for low-density parity-check codes. Electron. Lett. , 21 , 1356 - 1358
    14. 14)
      • Guo, F., Hanzo, L.: `Reliability ratio based weighted bit-flipping decoding for LDPC codes', IEEE 61st, Vehic. Technol. Conference VTC 2005-Spring, May/June 2005, 1, p. 709–713.
    15. 15)
      • C.-H. Lee , W. Wolf . Implementation-efficient reliability ratio based weighted bit-flipping decoding for LDPC codes. Electron. Lett. , 13 , 755 - 757
    16. 16)
      • X. Wu , C. Zhao , X. You . Parallel weighted bit-flipping decoding. IEEE Commun. Lett. , 8 , 671 - 673
    17. 17)
      • Wu, X., Jiang, M., Zhao, C., You, X.: `Fast weighted bit-flipping decoding of finite-geometry LDPC codes', IEEE Information Theory Workshop, ITW '06 Chengdu, October 2006, p. 132–134.
    18. 18)
      • Ngatched, T., Takawira, F., Bossert, M.: `A Modified bit-flipping decoding algorithm for low-density parity-check codes', IEEE Int. Conf. on Communications, ICC'07, 2007, p. 653–658.
    19. 19)
      • J. Zhang , J.S. Yedidia , M. Fossorier . Low-latency decoding of EG LDPC codes. J. Lightw. Technol. , 9 , 2879 - 2886
    20. 20)
      • J. Zhang , M. Fossorier . Shuffled iterative decoding. IEEE Trans. Commun. , 2 , 209 - 213
    21. 21)
      • Zhang, J., Wang, Y., Fossorier, M., Yedidia, J.: `Replica shuffled iterative decoding', Proc. Int. Symp. on Information Theory, 2005 ISIT, p. 454–458.
    22. 22)
      • J. Zhang , Y. Wang , M.P.C. Fossorier , J.S. Yedidia . Iterative decoding with replicas. IEEE Trans. Inf. Theory , 5 , 1644 - 1663
    23. 23)
      • A. Nouh , A. Banihashemi . Reliability-based schedule for bit-flipping decoding of low-density parity-check codes. IEEE Trans. Commun. , 12 , 2038 - 2040
    24. 24)
      • M.R. Tanner . A recursive approach to low complexity codes. IEEE Trans. Inf. Theory , 5 , 533 - 547
    25. 25)
      • MacKay, D.J.C.: ‘Encyclopedia of Sparse Graph Codes.’ [online]; http://www.inference.phy.cam.ac.uk/mackay/codes/data.html.
    26. 26)
      • Neal, R.M.: ‘Software for low-density parity-check codes.’ [online]; http://www.cs.toronto.edu/~radford/ldpc.software.html.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-com_20070632
Loading

Related content

content/journals/10.1049/iet-com_20070632
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address