Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

All-optical router with pulse-position modulation header processing in high-speed photonic packet switching networks

All-optical router with pulse-position modulation header processing in high-speed photonic packet switching networks

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Communications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In future high-speed photonic packet switching networks, it is highly desirable to carry out robust all-optical header recognition to provide high-throughput routing. The authors present a pulse-position modulation header processing (PPM-HP) scheme, offering significantly reduced routing table size and employing a single bit-wise AND operation to carry out correlation of the packet header with the entire routing table entries. The downsized routing table also offers multiple transmission modes (unicast, multicast and broadcast) in the optical layer and improves core network scalability where the number of core/edge nodes could be altered without the need for changing the number of routing table entries. The authors present modelling and simulation of the packet switching router based on PPM-HP. Noise propagation and crosstalk incurred in a multiple-hop routing scenario are investigated. The simulation results are presented and compared with the theoretical calculations.

References

    1. 1)
      • X.C. Yuan , V.O.K. Li , C.Y. Li , P.K.A. Wai . A novel self-routing address scheme for all-optical packet-switched networks with arbitrary topologies. IEEE J. Lightw. Technol. , 2 , 329 - 339
    2. 2)
      • C. Schubert , J. Berger , S. Diez . Comparison of interferometric all-optical switches for demultiplexing applications in high-speed OTDM systems. IEEE J. Lightw. Technol. , 4 , 618 - 624
    3. 3)
      • S.L. Jansen , S. Spaelter , G.D. Khoe , H.D. Waardt , H.E. Escobar , L. Marshall , M. Sher . 16×40 Gbps over 800 km of SSMF using mid-link spectral inversion. IEEE Photon. Technol. Lett. , 7 , 1763 - 1765
    4. 4)
      • Z. Ghassemlooy , W.P. Ng , H. Le-Minh . BER performance analysis of 100 and 200 Gbit/s all-optical OTDM node using symmetric Mach-Zehnder switches. IEE Proc. Circuits Devices Syst. , 4 , 361 - 369
    5. 5)
      • Z. Ghassemlooy , R. Ngah . Simulation of 1×2 OTDM router employing symmetric Mach-Zehnder switches. IEE Proc. Circuits Devices Syst. , 2 , 171 - 177
    6. 6)
      • Le-Minh, H., Ghassemlooy, Z., Ng, W.P.: `Multiple-hop routing based on the pulse-position-modulation header processing scheme in all-optical ultrafast packet switching network', Proc. 49th IEEE Global Telecommun. Conf. (GLOBECOM 2006), November–December 2006, San Francisco, USA, OPN06-3.
    7. 7)
      • S.A. Hamilton , B.S. Robinson , T.E. Murphy , S.J. Savage , E.P. Ippen . 100 Gbps optical time-division multiplexed networks. IEEE J. Lightw. Technol. , 12 , 2086 - 2100
    8. 8)
      • H. Le-Minh , Z. Ghassemlooy , W.P. Ng . All-optical flip-flop based on SMZ with a feedback-loop and multiple forward set/reset signals. SPIE Opt. Eng. Lett. , 4 , 040501 - 040501
    9. 9)
      • N. Calabretta , G. Contestabile , S.H. Kim , S.B. Lee , E. Ciaramella . Exploiting time-to-wavelength conversion for all-optical label processing. IEEE Photon. Technol. Lett. , 2 , 436 - 438
    10. 10)
      • K. Uchiyama , T. Morioka , S. Kawanishi , H. Takara , M. Saruwatari . Signal-to-noise ratio analysis of 100 Gb/s demultiplexing using nonlinear optical loop mirror. IEEE Lightw. Technol. , 2 , 194 - 201
    11. 11)
      • Bannister, J., Touch, J., Kamath, P., Patel, A.: `An optical booster for internet routers', Proc. 8th Int. Conf. High Perf. Comp. (Inv. paper), 2001, Hyderabad, India, p. 399–413.
    12. 12)
      • Le-Minh, H., Ghassemlooy, Z., Ng, W.P.: `Ultrafast all-optical self clock extraction based on two inline symmetric Mach-Zehnder switches', Proc. 8th Int. Conf. on Transparent Optical Networks (ICTON 2006), June 2006, Nottingham, UK, 4, p. 64–67.
    13. 13)
      • W. Wang , L.G. Rau , D.J. Blumenthal . 160 Gb/s variable length packet/10 Gb/s-label all-optical label switching with wavelength conversion and unicast/multicast operation. IEEE J. Lightw. Technol. , 1 , 211 - 218
    14. 14)
      • R.S. Tucker , G. Eisenstein , S.K. Korotky . Optical time-division multiplexing for very high bit-rate transmission. IEEE J. Lightw. Technol. , 11 , 1737 - 1749
    15. 15)
      • A. Chowdhury , J. Yu , G.K. Chang . Same wavelength packet switching in optical label switched networks. IEEE J. Lightw. Technol. , 12 , 4838 - 4849
    16. 16)
      • N. Calabretta , H.D. Waardt , G.D. Khoe , H.J.S. Dorren . Ultrafast asynchronous multioutput all-optical header processor. IEEE Photon. Technol. Lett. , 4 , 1182 - 1184
    17. 17)
      • N.A. Olsson . Lightwave systems with optical amplifiers. IEEE Lightw. Technol. , 7 , 1071 - 1082
    18. 18)
      • R. Ramaswami , K.N. Sivarijan . (1998) Optical networks – a practical perspective.
    19. 19)
      • Tukiewicz, J.P., Tangdiongga, E., Khoe, G.D.: `Field trial of 160 Gbps OTDM add/drop node in a link of 275 km deployed fiber', Proc. OFC 2004, 2004, USA, PDP1.
    20. 20)
      • I. Glesk , R.J. Runser , P.R. Prucnal . New generation of devices for all-optical communications. Acta Phys. Slova. , 2 , 151 - 162
    21. 21)
      • I. Shake , H. Takara , I. Ogawa . 160-Gb/s full channel optical time-division demultiplexer based on SOA-array integrated PLC and its application to OTDM transmission experiment. IEICE Trans. Commun. , 1 , 203 - 209
    22. 22)
      • Hauer, M.C., McGeehan, J., Touch, J.: `Dynamically reconfigurable all-optical correlators to support ultra-fast internet routing', Proc. OFC 2002, March 2002, USA, p. 268–270.
    23. 23)
      • G.P. Agrawal . (1997) Fiber-optic communication systems.
    24. 24)
      • P. Green . Progress in optical networking. IEEE Commun. Mag. , 1 , 54 - 61
    25. 25)
      • Rau, L., Rangarajan, S., Blumenthal, D.J., Chou, H.-F., Chiu, Y.-J., Bowers, J.E.: `Two hop all-optical label swapping with variable length 80 Gbps packet and 10 Gbps using nonlinear wavelength converters, unicast-multicast output and a single EAM for 80 to 10 Gbps packet demultiplexing', Proc. OFC 2002, March 2002, USA, p. FD2-1–FD2-3.
    26. 26)
      • F. Ramos , E. Kehayas , J.M. Martinez . IST-LASAGNE: towards all-optical label swapping employing optical logic gates and optical flip-flops. IEEE J. Lightw. Technol. , 10 , 2993 - 3011
    27. 27)
      • G.P. Agrawal . (2005) Lightwave technology: telecommunication systems.
    28. 28)
      • J.M. Martinez , F. Ramos , J. Marti . All-optical packet header processor based on cascaded SOA-MZIs. IEE Electron. Lett. , 14 , 894 - 895
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-com_20070505
Loading

Related content

content/journals/10.1049/iet-com_20070505
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address