http://iet.metastore.ingenta.com
1887

Chinese Internet AS-level topology

Chinese Internet AS-level topology

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Communications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The first complete measurement of the Chinese Internet topology at the autonomous systems (AS) level based on traceroute data probed from servers of major ISPs in mainland China is presented. Both the Chinese Internet AS graph and the global Internet AS graph can be accurately reproduced by the positive-feedback preference model with the same parameters. This result suggests that the Chinese Internet preserves well the topological characteristics of the global Internet. This is the first demonstration of the Internet's topological fractality, or self-similarity, performed at the level of topology evolution modelling.

References

    1. 1)
    2. 2)
    3. 3)
      • National Laboratory for Applied Network Research. http://moat.nlanr.net/, accessed November 2006.
    4. 4)
      • University of Oregon, `Route Views Project', November 2006, Eugene. http://www.routeviews.org/, accessed.
    5. 5)
      • The Cooperative Association For Internet Data Analysis (CAIDA): http://www.caida.org/, accessed November 2006.
    6. 6)
      • R. Pastor-Satorras , A. Vespignani . (2004) Evolution and structure of the Internet—a statistical physics approach.
    7. 7)
      • S. Zhou , R.J. Mondragón . Accurately modelling the Internet topology. Phys. Rev. E
    8. 8)
      • S. Zhou . Understanding the evolution dynamics of Internet topology. Phys. Rev. E
    9. 9)
    10. 10)
      • Hyun, Y., Broido, A., Claffy, K.C.: `Traceroute and BGP AS path incongruities', , http://www.caida.org/outreach/papers/2003/ASP/, accessed November 2006.
    11. 11)
      • CAIDA Internet topology data kit ITDK#0304. http://www.caida.org/tools/measurement/skitter/idkdata.xml, accessed November 2006.
    12. 12)
      • `The 18th Statistical Report on the Internet Development in China', November 2006, http://www.cnnic.net.cn/en/index/0O/index.htm, accessed.
    13. 13)
      • Chinese Web Yellow Pageshttp://chinayp.com.cn/, accessed November 2006.
    14. 14)
      • Y. Jinag , S. He . Study on the destination selection method in router-level Internet topology measurement. J. Commun. , 2 , 29 - 34, 41
    15. 15)
      • Asia Pacific Network Information Center (APNIC), November 2006, http://www.apnic.net/ accessed.
    16. 16)
      • IRTF Routing Research Group's (RRG) Future Domain Routing (FDR) Scalability Research Subgroup (RR-FS), November 2006, http://rr-fs.caida.org/, accessed.
    17. 17)
      • CAIDA's NeTS-NR Project, `Toward mathematically rigourous next-generation routing protocols for realistic network topologies', November 2004, http://www.caida.org/funding/nets-nr/, accessed.
    18. 18)
      • Krioukov, D., Krapivsky, P.: `Power laws as a pre-asymptotic regime of the PFP model', November 2006, http://www.caida.org/publications/presentations/2006/isma0605_dima/isma0605_dima.pdf, accessed.
    19. 19)
      • A.L. Barabási , R. Albert . Emergence of scaling in random networks. Science , 509 - 512
    20. 20)
      • Chen, Q., Chang, H., Govindan, R., Jamin, S., Shenker, S.J., Willinger, W.: `The origin of power laws in Internet topologies (revisited)', Proc. INFOCOM, 2002, p. 608–617.
    21. 21)
      • Park, S.T., Khrabrov, A., Pennock, D.M., Lawrence, S., Giles, C.L., Ungar, L.H.: `Static and dynamic analysis of the Internet's susceptibility to faults and attacks', Proc. INFOCOM, 2003, 3, p. 2144–2154.
    22. 22)
      • A. Vázquez , R. Pastor-Satorras , A. Vespignani . Large-scale topological and dynamical properties of Internet. Phys. Rev. E
    23. 23)
    24. 24)
      • H. Tangmunarunkit , R. Govindan , S. Jamin , S. Shenker , W. Willinger . Network topology generators: degree-based vs. structural. Proc. SIGCOMM , 147 - 159
    25. 25)
      • M.E.J. Newman . Mixing patterns in networks. Phys. Rev. E
    26. 26)
      • A. Vazquez , R.P.-S.M. Boguna , Y. Moreno , A. Vespignani . Topology and correlations in structured scale-free networks. Phys. Rev. E
    27. 27)
    28. 28)
    29. 29)
    30. 30)
      • Labovitz, C., Ahuja, A., Wattenhofer, R., Venkatachary, S.: `The impact of Internet policy and topology on delayed routing convergence', Proc. INFOCOM, 2001, p. 537–546.
    31. 31)
      • S.N. Dorogovtsev , A.V. Goltsev , J.F.F. Mendes . k-core organization of complex networks. Phys. Rev. Lett.
    32. 32)
      • Alvarez-Hamelin, J.-I., Dall'Asta, L., Barrat, A., Vespignani, A.: `k-core decomposition: a tool for the visualization of large scale networks', November 2006, http://arxiv.org/abs/cs/0511007, accessed.
    33. 33)
      • Topology visualisation tool LaNet-VI:http://xavier.informatics.indiana.edu/lanet-vi/, accessed November 2006.
    34. 34)
      • Chang, H., Jamin, S., Willinger, W.: `To Peer or not to Peer: modeling the Evolution of the Internet's AS-level Topology', Proc. INFOCOM, 2006.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-com_20060518
Loading

Related content

content/journals/10.1049/iet-com_20060518
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address