access icon free Concurrent transmission scheduling algorithm based on Stackelberg game to enhance time reuse for D2D communications in mmWave networks

Due to the tremendous propagation loss of millimeter wave (mmWave) communication, device-to-device (D2D) communications are widely used over directional mmWave networks to improve network throughput. Most of existing works are mainly focused on concurrent transmission among D2D pairs that have no mutual interference. However, considering the propagation loss and directional interference features, the D2D pairs that interfere with each other can be used to improve network throughput. In this paper, we propose a time resource sharing scheme based on Stackelberg game for D2D pairs to further enhance network throughput. The interference D2D pairs can access to the time resource through paying the price for the interference caused by them. At the same time, the non-interference D2D pairs can be scheduled. Concurrent transmission scheduling among interference D2D pairs is formulated as a non-cooperative game, which enables a distributed transmission power control for interference D2D pairs. Moreover, the price strategy can be adjusted by setting interference threshold such that the transmission quality can be guaranteed. Simulation results show that the proposed scheme can achieve significant performance gains compared with classical concurrent transmission in terms of network throughput and energy efficiency. In addition, the convergence and utility of the game are also verified.

Inspec keywords: radiofrequency interference; power control; telecommunication scheduling; cellular radio; pricing; optimisation; millimetre wave communication; game theory; 5G mobile communication

Other keywords: mmWave communication; concurrent transmission scheduling algorithm; interference threshold; distributed transmission power control; network throughput; time reuse; directional mmWave networks; Stackelberg game; future fifth generation cellular networks; time resource; directional interference features; D2D pairs; millimetre wave communication; mutual interference; device-to-device communications; classical concurrent transmission; tremendous propagation loss

Subjects: Electromagnetic compatibility and interference; Game theory; Mobile radio systems; Optimisation techniques

References

    1. 1)
      • 7. Singh, S., Ziliotto, F., Madhow, U., et al: ‘Blockage and directivity in 60 ghz wireless personal area networks: from cross-layer model to multihop mac design’, IEEE J. Sel. Areas Commun., 2009, 27, (8), pp. 14001413.
    2. 2)
      • 26. Ning, J., Kim, T.S., Krishnamurthy, S.V., et al: ‘Directional neighbor discovery in 60 GHz indoor wireless networks’. Performance Evaluation, 2011, 68, (9), pp. 897915.
    3. 3)
      • 16. Agiwal, M., Roy, A., Saxena, N.: ‘Next generation 5G wireless networks: a comprehensive survey’, IEEE Commun. Surv. Tutor., 2016, 18, (3), pp. 16171655.
    4. 4)
      • 4. Geng, S., Kivinen, J., Zhao, X., et al: ‘Millimeter-wave propagation channel characterization for short-range wireless communications’, IEEE Trans. Veh. Technol., 2009, 58, (1), pp. 313.
    5. 5)
      • 20. ur Rehman, W., Han, J., Yang, C., Ahmed, M., Tao, X.: ‘On scheduling algorithm for device-to-device communication in 60 GHz networks’. 2014 IEEE Wireless Communications and Networking Conference (WCNC), Istanbul, Turkey, 2014, pp. 24742479.
    6. 6)
      • 28. Mudumbai, R., Singh, S.K., Madhow, U.: ‘Medium access control for 60 ghz outdoor mesh networks with highly directional links’. INFOCOM 2009, Rio de Janeiro, Brazil, 2009, pp. 28712875.
    7. 7)
      • 6. Xiao, Z., Bai, L., Choi, J.: ‘Iterative joint beamforming training with constant-amplitude phased arrays in millimeter-wave communications’, IEEE Commun. Lett., 2014, 18, (5), pp. 829832.
    8. 8)
      • 24. Chu, Z., Le, T.A., Nguyen, H.X., et al: ‘A stackelberg-game approach for disaster-recovery communications utilizing cooperative D2D’, IEEE Access, 2018, 6, pp. 1073310742.
    9. 9)
      • 23. Zhang, J., Dai, M., Su, Z.: ‘Task allocation with unmanned surface vehicles in smart ocean IoT’, IEEE Internet Things J., 2020, 7, (10), pp. 97029713.
    10. 10)
      • 17. Niu, Y., Liu, Y., Li, Y., et al: ‘Device-to-device communications enabled energy efficient multicast scheduling in mmwave small cells’, IEEE Trans. Commun., 2018, 66, (3), pp. 10931109.
    11. 11)
      • 29. Sun, C., Peng, M., Sun, Y., et al: ‘Distributed power control for device-to-device network using stackelberg game’. 2014 IEEE Wireless Communications and Networking Conf. (WCNC), Istanbul, Turkey, 2014, pp. 13441349.
    12. 12)
      • 3. Roh, W., Seol, J.Y., Park, J., et al, et al.:Millimeter-wave beamforming as an enabling technology for 5G cellular communications: theoretical feasibility and prototype results’, IEEE Commun. Mag., 2014, 52, (2), pp. 106113.
    13. 13)
      • 30. Zhao, J., Chai, K.K., Chen, Y., et al: ‘Two-level game for relay-based throughput enhancement via d2d communications in LTE networks’. 2016 IEEE Int. Conf. on Communications (ICC), Kuala Lumpur, Malaysia, 2016, pp. 16.
    14. 14)
      • 22. Hui, Y., Su, Z., Guo, S.: ‘Utility based data computing scheme to provide sensing service in internet of things’, IEEE Trans. Emerg. Top. Comput., 2019, 7, (2), pp. 337348.
    15. 15)
      • 2. Rebato, M., Mezzavilla, M., Rangan, S., et al: ‘Resource sharing in 5G mmwave cellular networks’. 2016 IEEE Conf. on Computer Communications Workshops (INFOCOM WKSHPS), San Francisco, CA, USA, 2016, pp. 271276.
    16. 16)
      • 5. Qiao, J., Shen, X.S., Mark, J.W., et al: ‘Enabling device-to-device communications in millimeter-wave 5G cellular networks’, IEEE Commun. Mag., 2015, 53, (1), pp. 209215.
    17. 17)
      • 13. Yin, R., Yu, G., Zhong, C., et al: ‘Distributed resource allocation for D2D communication underlaying cellular networks’. 2013 IEEE Int. Conf. on Communications Workshops (ICC), Budapest, Hungary, 2013, pp. 138143.
    18. 18)
      • 12. Yin, R., Zhong, C., Yu, G., et al: ‘Joint spectrum and power allocation for D2D communications underlaying cellular networks’, IEEE Trans. Veh. Technol., 2016, 65, (4), pp. 21822195.
    19. 19)
      • 1. Rappaport, T.S., Sun, S., Mayzus, R., et al: ‘Millimeter wave mobile communications for 5G cellular: it will work!’, IEEE Access, 2013, 1, pp. 335349.
    20. 20)
      • 11. Rakesh, R.T., Das, G., Sen, D.: ‘Energy efficient scheduling for concurrent transmission in millimeter wave wpans’, IEEE Trans. Mob. Comput., 2018, 17, (12), pp. 27892803.
    21. 21)
      • 25. Li, Y., Zhang, Z., Wang, W., et al: ‘Concurrent transmission based stackelberg game for D2D communications in mmwave networks’. 2017 IEEE Int. Conf. on Communications (ICC), Paris, France, 2017, pp. 16.
    22. 22)
      • 19. Niu, Y., Su, L., Gao, C., et al: ‘Exploiting device-to-device communications to enhance spatial reuse for popular content downloading in directional mmwave small cells’, IEEE Trans. Veh. Technol., 2016, 65, (7), pp. 55385550.
    23. 23)
      • 32. Scutari, G., Palomar, D.P., Barbarossa, S.: ‘Asynchronous iterative water-filling for gaussian frequency-selective interference channels’, IEEE Trans. Inf. Theory, 2008, 54, (7), pp. 28682878.
    24. 24)
      • 33. Bertsekas, D., Tsitsiklis, J.: ‘Parallel and distributed computation: numerical methods/dimitri p. bertsekas, john n. tsitsiklis’. SERBIULA (sistema Librum 20), 1989.
    25. 25)
      • 21. Marjanović, M., Antonić, A., Žarko, I.P.: ‘Edge computing architecture for mobile crowdsensing’, IEEE Access, 2018, 6, pp. 1066210674.
    26. 26)
      • 14. Wang, Q., Wang, W., Jin, S., et al: ‘Quality-optimized joint source selection and power control for wireless multimedia d2d communication using stackelberg game’, IEEE Trans. Veh. Technol., 2015, 64, (8), pp. 37553769.
    27. 27)
      • 18. Niu, Y., Yu, L., Li, Y., et al: ‘Device-to-device communications enabled multicast scheduling for mmwave small cells using multi-level codebooks’, IEEE Trans. Veh. Technol., 2019, 68, (3), pp. 27242738.
    28. 28)
      • 31. Fugenberg, D., Tirole, J.: ‘Game theory’ (MIT Press, Cambridge, MA, 1991).
    29. 29)
      • 15. Alkurd, R., Shubair, R.M., Abualhaol, I.: ‘Survey on device-to-device communications: challenges and design issues’. 2014 IEEE 12th Int. Conf. on New Circuits and Systems Conf. (NEWCAS), Trois-Rivieres, QC, Canada, 2014, pp. 361364.
    30. 30)
      • 27. Deng, H., Sayeed, A.: ‘Mm-wave mimo channel modeling and user localization using sparse beamspace signatures’. 2014 IEEE 15th Int. Workshop on Signal Processing Advances in Wireless Communications (SPAWC), Toronto, ON, Canada, 2014, pp. 130134.
    31. 31)
      • 9. Jiang, J., Zhang, S., Li, B., et al: ‘Maximized cellular traffic offloading via device-to-device content sharing’, IEEE J. Sel. Areas Commun., 2016, 34, (1), pp. 8291.
    32. 32)
      • 10. Zhao, W., Wang, S.: ‘Resource sharing scheme for device-to-device communication underlaying cellular networks’, IEEE Trans. Commun., 2015, 63, (12), pp. 48384848.
    33. 33)
      • 8. Asadi, A., Wang, Q., Mancuso, V.: ‘A survey on device-to-device communication in cellular networks’, IEEE Commun. Surv. Tutor., 2014, 16, (4), pp. 18011819.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-com.2020.0633
Loading

Related content

content/journals/10.1049/iet-com.2020.0633
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading