access icon free Coverage and rate analysis for 5G-heterogeneous network: β-Ginibre point process

Stochastic geometry is emerging as tractable solution and attractive approach to evaluate the performance of 5G heterogeneous network (5G-Hetnet) such as coverage, outage and rate probability. The base stations (BSs) and fading distribution in 5G-Hetnet are an almost ubiquitous assumption for analytical study, requiring flexible and scalable approaches. However, the β-Ginibre point process (β-GPP) has been proposed as a new method to model wireless network. This study provides a general framework to analyse downlink mmWave cellular network with Nakagami-m fading and directional beamforming. First, cell association scheme in both line-of-site and non-line-of-site is considered based on the strongest average received power. After deriving cell association probability between user equipment and BS, the computationally coverage probability expression is obtained depending on signal-to-interference-plus-noise ratio. Furthermore, the impact of biasing factor on rate coverage probability is investigated. Finally, considering inter-cell-interference coordination, most performances metrics will be re-evaluated to determine their influence on the network. Recommended approaches produce satisfactory results when biasing factor and antenna beamforming are used.

Inspec keywords: stochastic processes; cellular radio; radiofrequency interference; probability; radio networks; array signal processing; millimetre wave communication; 5G mobile communication; Nakagami channels

Other keywords: flexible approaches; inter-cell-interference coordination; β-GPP; computationally coverage probability expression; recommended approaches; scalable approaches; nonline-of-site; 5G heterogeneous network; rate probability; cell association scheme; 5G-Hetnet; analyse downlink mmWave cellular network; β-Ginibre point process; 5G-heterogeneous network; rate coverage probability; Nakagami-m fading; rate analysis; outage; cell association probability; wireless network; base stations; stochastic geometry; line-of-site; tractable solution

Subjects: Mobile radio systems; Electromagnetic compatibility and interference; Other topics in statistics; Signal processing and detection

References

    1. 1)
      • 19. Turgut, E., Cenk Gursoy, M.: ‘Coverage in heterogeneous downlink millimeter wave cellular networks’, IEEE Trans. Commun., 2017, 65, (10), pp. 44634477.
    2. 2)
      • 24. Chen, J., Yuan, C.: ‘Coverage probability and average rate of downlink user-centric wireless cellular networks with composite κ-µ shadowed and lognormal shadowed fading’, IET Commun., 2019, 13, (17), pp. 28052813.
    3. 3)
      • 10. Bai, T., Heath, R.W.: ‘Coverage and rate analysis for millimeter-wave cellular networks’, IEEE Trans.Wirel. Commun., 2015, 14, (2), pp. 11001114.
    4. 4)
      • 12. Deng, N., Zhou, W., Haenggi, M.: ‘The Ginibre point process as a model for wireless networks with repulsion’, IEEE Trans. Wireless Commun., 2015, 14, (1), pp. 107121.
    5. 5)
      • 8. Andrews, J.G., Buzzi, S., Choi, W., et al: ‘\What will 5G Be?’, IEEE J. Sel. Areas Commun., 2014, 32, (6), pp. 10651082.
    6. 6)
      • 25. Yan, Z., Zhou, W., Chen, S., et al: ‘Modeling and analysis of two-tier HetNets with cognitive small cells’, IEEE Access, 2017, 5, pp. 29042912.
    7. 7)
      • 9. Błaszczyszyn, B., Haenggi, M., Keeler, P.: ‘Stochastic geometry analysis of cellular networks’ (Cambridge University Press, England, 2018).
    8. 8)
      • 23. Singh, S., Andrews, J.G.: ‘Joint resource partitioning and offloading in heterogeneous cellular networks’, IEEE Trans. Wirel. Commun., 2014, 13, (2), pp. 888901.
    9. 9)
      • 20. Liu, C.-H., Liang, D.-C.: ‘Heterogeneous networks with power-domain NOMA: coverage, throughput, and power allocation analysis’, IEEE Trans. Wirel. Commun., 2018, 17, (5), pp. 35243539.
    10. 10)
      • 18. Haenggi, M.: ‘Stochastic geometry for wireless networks’ (Cambridge Univ. Press, Cambridge, U.K, 2012).
    11. 11)
      • 5. Cheng, M., Wang, J.-B, Wu, Y., et al: ‘Coverage analysis for millimeter wave cellular networks with imperfect beam alignment’, IEEE Trans. Veh. Technol., 2018, 63, (9), pp. 83028314.
    12. 12)
      • 17. Torrisi, G.L., Leonardi, E.: ‘Large deviations of the interference in the ginibre network model’, IEEE Trans. Wireless Commun., 2014, 4, (18), pp. 133.
    13. 13)
      • 7. Andrews, J.G., Bai, T., Kulkarni, M.N., et al: ‘Modeling and analyzing millimeter wave cellular systems’, IEEE Trans. Commun., 2017, 65, (1), pp. 403430.
    14. 14)
      • 4. Belbase, K., Zhang, Z., Jiang, H., et al: ‘Coverage analysis of millimeter wave decode-and-forward networks with best relay selection’, IEEE Access, 2018, 6, pp. 2267022683.
    15. 15)
      • 11. Gao, Y., Yang, S., Wu, S., et al: ‘Coverage probability analysis for mmWave communication network with ABSF-based interference management by stochastic geometry’, IEEE Access, 2019, 7, pp. 133572133582.
    16. 16)
      • 14. Saha, C., Dhillon, H.S., Miyoshi, N., et al: ‘Unified analysis of HetNets using Poisson cluster processes under max-power association’, IEEE Trans. Wirel. Commun., 2019, 18, (8), pp. 37973812.
    17. 17)
      • 21. Ding, M., Wang, P., Pérez, D.-L., et al: ‘Performance impact of Los and NLoS transmissions in dense cellular networks’, IEEE Trans. Wirel. Commun., 2016, 15, (3), pp. 23652380.
    18. 18)
      • 6. Bartoli, G., Fantacci, R., Letaief, K. B., et al: ‘Beamforming for small cell deployment in LTE-advanced and beyond’, IEEE Wirel. Commun., 2014, 21, (2), pp. 5056.
    19. 19)
      • 13. Wei, H., Deng, N., Zhou, W., et al: ‘Approximate SIR analysis in general heterogeneous cellular networks’, IEEE Trans. Commun., 2016, 64, (3), pp. 12591273.
    20. 20)
      • 15. Ouamri, M.A., Oteşteanu, M.-E., Isar, A., et al: ‘Coverage, handoff and cost optimization for 5G heterogeneous network’, Phys. Commun., 2020, 39, pp. 18.
    21. 21)
      • 26. Liu, Y., Qin, Z., Elkashlan, M., et al: ‘Nonorthogonal multiple access in large-scale heterogeneous networks’, IEEE J. Sel. Areas Commun., 2017, 35, (12), pp. 26672680.
    22. 22)
      • 3. Rappaport, T., Sun, S., Mayzus, R., et al: ‘Millimeter wave mobile communications for 5G cellular: it will work!’, IEEE Access, 2013, 1, pp. 335349.
    23. 23)
      • 2. Akdeniz, M.R., Liu, Y., Samimi, M.K., et al: ‘Millimeter wave channel modeling and cellular capacity evaluation’, IEEE J. Sel. Areas Commun., 2014, 32, (6), pp. 11641179.
    24. 24)
      • 22. Bai, T., Vaze, R., Heath, R. WJr.: ‘Analysis of blockage effects on urban cellular networks’, IEEE Trans. Wireless Commun., 2014, 13, (9), pp. 50705083.
    25. 25)
      • 16. Jafari, A.H., Pérez, D.L., Ding, M., et al: ‘Performance analysis of dense small cell networks with practical antenna heights under rician fading’, IEEE Access, 2017, 6, pp. 99609974.
    26. 26)
      • 1. Pervez, M.M., Abbas, Z.H, Muhammad, F., et al: ‘Location-based coverage and capacity analysis of a two tier HetNet’, IET Commun., 2017, 11, (7), pp. 10671073.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-com.2020.0599
Loading

Related content

content/journals/10.1049/iet-com.2020.0599
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading