access icon free Performance analysis of adaptive combining based hybrid FSO/RF terrestrial communication

This study deals with the performance analysis of adaptive combining-based hybrid free-space optics (FSO)/radio-frequency (RF) system in a terrestrial communication scenario with and without pointing errors. Here, outage probability and average symbol error rate (SER) are used as the performance metrics. Adaptive combining is a switching scheme in which the FSO link is active throughout, whereas the RF link is activated based on the transmission reliability of the FSO link and maximal-ratio-combining (MRC) of RF and FSO links is performed at the destination. The small-scale fading in RF and atmospheric turbulence induced fading in FSO links have been characterised by Nakagami-m and Gamma–Gamma distributions, respectively. In addition, the radial displacement between the beam centre and detector centre, which induces pointing errors, is modelled using Rayleigh distribution. The exact closed form expressions for the outage and average SER have been derived along with their corresponding asymptotic expressions. Diversity gain of the system has also been determined using the asymptotic expressions. Further, the variation in the performance of the system has been analysed with respect to various parameters including link distance, fading severity parameter, average signal-to-noise of the RF link, and the pointing errors parameter.

Inspec keywords: atmospheric turbulence; optical links; gamma distribution; diversity reception; error statistics; free-space optical communication; telecommunication network reliability; Nakagami channels

Other keywords: RF link; adaptive combining; FSO link; parameters including link distance; performance metrics; pointing errors parameter; atmospheric turbulence induced fading; outage probability; maximal-ratio-combining; average symbol error rate; terrestrial communication scenario

Subjects: Reliability; Error statistics (inc. error probability); Free-space optical links

References

    1. 1)
      • 16. Anees, S., Bhatnagar, M.R.: ‘Performance evaluation of decode-and-forward dual-hop asymmetric radio frequency-free space optical communication system’, IET Optoelectron., 2015, 9, (5), pp. 232240.
    2. 2)
      • 15. Nasab, E.S., Uysal, M.: ‘Generalized performance analysis of mixed RF/FSO cooperative systems’, IEEE Trans. Wirel. Commun., 2016, 15, (1), pp. 714727.
    3. 3)
      • 25. Rakia, T., Yang, H., Gebali, F., et al: ‘Outage performance of hybrid FSO/RF system with low-complexity power adaptation’. Proc. 2015 IEEE Globecom Workshops, San Diego, CA, 2015, pp. 16.
    4. 4)
      • 24. Rakia, T., Yang, H., Gebali, F., et al: ‘Power adaptation based on truncated channel inversion for hybrid FSO/RF transmission with adaptive combining’, IEEE Photon. J., 2015, 7, (4), pp. 112.
    5. 5)
      • 23. Rakia, T., Yang, H., Alouini, M., et al: ‘Outage analysis of practical FSO/RF hybrid system with adaptive combining’, IEEE Commun. Lett., 2015, 19, (8), pp. 13661369.
    6. 6)
      • 20. Touati, A., Abdaoui, A., Touati, F., et al: ‘On the effects of combined atmospheric fading and misalignment on the hybrid FSO/RF transmission’, IEEE J. Opt. Commun. Netw., 2016, 8, (10), pp. 715725.
    7. 7)
      • 27. Suzuki, H.: ‘A statistical model for urban multipath propagation’, IEEE Trans. Commun., 1977, COM-25, (7), pp. 673680.
    8. 8)
      • 5. Chowdhury, M.Z., Hasan, M.K., Shahjalal, M., et al: ‘Optical wireless hybrid networks: trends, opportunities, challenges, and research directions’, IEEE Commun. Surv. Tutor., Secondquarter 2020, 22, (2), pp. 930966.
    9. 9)
      • 6. Kaushal, H., Jain, V.K., Kar, S.: ‘Free space optical communication’ (Springer India Publication, India, 2017, 1st edn.).
    10. 10)
      • 17. Shakir, W.M.R.: ‘On performance analysis of hybrid FSO/RF systems’, IET Commun., 2019, 13, (11), pp. 16771684.
    11. 11)
      • 13. Kumar Sharma, P., Bansal, A., Garg, P., et al: ‘Relayed FSO communication with aperture averaging receivers and misalignment errors’, IET Commun., 2017, 11, (1), pp. 4552.
    12. 12)
      • 18. Ali Amirabadi, M., Tabataba Vakili, V.: ‘Performance analysis of a novel hybrid FSO/RF communication system’, IET Optoelectron., 2020, 14, (2), pp. 6674.
    13. 13)
      • 21. Sharma, S., Madhukumar, A.S., Swaminathan, R.: ‘Switching-based cooperative decode-and-forward relaying for hybrid FSO/RF networks’, IEEE J. Opt. Commun. Netw., 2019, 11, (6), pp. 267281.
    14. 14)
      • 30. The Wolfram Research Meijer G-function document. Available at: https://functions.wolfram.com/PDF/MeijerG.pdf.
    15. 15)
      • 19. Najafi, M., Jamali, V., Schober, R.: ‘Optimal relay selection for the parallel hybrid RF/FSO relay channel: non-buffer-aided and buffer-aided designs’, IEEE Trans. Commun., 2017, 65, (7), pp. 27942810.
    16. 16)
      • 3. Chatzidiamantis, N.D., Karagiannidis, G.K., Kriezis, E.E., et al: ‘Diversity combining in hybrid RF/FSO systems with PSK modulation’. Proc. IEEE Int. Conf. on Communications (ICC), Kyoto, 2011, pp. 16.
    17. 17)
      • 11. Bhatnagar, M.R.: ‘Average BER analysis of relay selection based decode-and-forward cooperative communication over gamma-gamma fading FSO links’. Proc. IEEE ICC, Budapest, 2013, pp. 31423147.
    18. 18)
      • 29. Gradshteyn, I.S., Ryzhik, I.M.: ‘Table of integrals, series, and products’ (Elsevier Academic Press, USA, 2007).
    19. 19)
      • 8. Uysal, M., Li, J., Yu, M.: ‘Error rate performance analysis of coded free-space optical links over gamma-gamma atmospheric turbulence channels’, IEEE Trans. Wirel. Commun., 2006, 5, (6), pp. 12291233.
    20. 20)
      • 4. Usman, M., Yang, H., Alouini, M.: ‘Practical switching-based hybrid FSO/RF transmission and its performance analysis’, IEEE Photon. J., 2014, 6, (5), pp. 113.
    21. 21)
      • 10. Zedini, E., Soury, H., Alouini, M.: ‘Dual-hop FSO transmission systems over gamma-gamma turbulence with pointing errors’, IEEE Trans. Wirel. Commun., 2017, 16, (2), pp. 784796.
    22. 22)
      • 31. Proakis, J.: ‘Digital communications’ (McGraw-Hill, New York, NY, USA, 2000, 4th edn.).
    23. 23)
      • 26. Siddharth, M., Suyash, S., Swaminathan, R.: ‘Outage analysis of adaptive combining scheme for hybrid FSO/RF communication’. Proc. IEEE National Conf. on Communications (NCC), IIT Kharagpur, India, 2020, pp. 16.
    24. 24)
      • 28. Nor, N.A.M., Ghassemlooy, Z., Zvanovec, S., et al: ‘Experimental analysis of a triple-hop relay-assisted FSO system with turbulence’, Opt. Switch. Netw., 2019, 33, pp. 194198.
    25. 25)
      • 2. Ghassemlooy, Z., Arnon, S., Uysal, M., et al: ‘Emerging optical wireless communications-advances and challenges’, IEEE J. Sel. Areas Commun., 2015, 33, (9), pp. 17381749.
    26. 26)
      • 22. Sharma, S., Madhukumar, A.S., Swaminathan R, R.: ‘Effect of pointing errors on the performance of hybrid FSO/RF networks’, IEEE Access, 2019, 7, pp. 131418131434.
    27. 27)
      • 12. Bhatnagar, M.R.: ‘A one bit feedback based beamforming scheme for FSO MISO system over gamma-gamma fading’, IEEE Trans. Commun., 2015, 63, (4), pp. 13061318.
    28. 28)
      • 7. Farid, A.A., Hranilovic, S.: ‘Outage capacity optimization for free-space optical links with pointing errors’, J. Lightw. Technol., 2007, 25, (7), pp. 17021710.
    29. 29)
      • 9. Yang, L., Gao, X., Alouini, M.S.: ‘Performance analysis of free-space optical communication systems with multiuser diversity over atmospheric turbulence channels’, IEEE Photon. J., 2014, 6, (2), pp. 117.
    30. 30)
      • 14. Djordjevic, G.T., Petkovic, M.I., Cvetkovic, A.M., et al: ‘Mixed RF/FSO relaying with outdated channel state information’, IEEE J. Sel. Areas Commun., 2015, 33, (9), pp. 19351948.
    31. 31)
      • 1. Khalighi, M.A., Uysal, M.: ‘Survey on free space optical communication: a communication theory perspective’, IEEE Commun. Surv. Tutor., Fourthquarter 2014, 16, (4), pp. 22312258.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-com.2020.0598
Loading

Related content

content/journals/10.1049/iet-com.2020.0598
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading