access icon free Application of GSVD-based precoding in MIMO-NOMA relaying systems

In this study, a simple two-user multiple-input multiple-output (MIMO) relaying scenario is considered. To efficiently exploit the spectrum resources, a generalised singular value decomposition (GSVD) based precoding scheme with non-orthogonal multiple access (NOMA) is proposed, which converts the multiple channels into several parallel single channels. The performance of the proposed GSVD-MIMO relaying scheme is evaluated by using the distribution characteristics of squared generalised singular values of two users' channel matrices and the eigenvalues of the relay's channel matrix to obtain the expressions of the average data rate and outage probabilities. Both the asymptotic case and a practical scenario with nodes equipped with finite numbers of antennas are analysed because the distribution characteristics of squared generalised singular values in the two cases are different. Two special cases, single-input multiple-output and multiple-input single-output are considered. Simulation experiments are carried out to verify the effectiveness and accuracy of the obtained analytical results.

Inspec keywords: telecommunication network reliability; relay networks (telecommunication); matrix algebra; singular value decomposition; probability; MIMO communication; eigenvalues and eigenfunctions; wireless channels; nonorthogonal multiple access; precoding

Other keywords: nonorthogonal multiple access; MIMO-NOMA relaying systems; generalised singular value decomposition based precoding; outage probabilities; two users channel matrices; multiple-input multiple-output relaying; multiple channels; relay channel matrix; several parallel single channels; GSVD-based precoding; squared generalised singular values; asymptotic case

Subjects: Reliability; Multiple access communication; Linear algebra (numerical analysis); Codes; Other topics in statistics; Radio links and equipment

References

    1. 1)
      • 22. Ding, Z., Yang, Z., Fan, P., et al: ‘On the performance of non-orthogonal multiple access in 5G systems with randomly deployed users’, IEEE Signal Process. Lett., 2014, 21, (12), pp. 15011505.
    2. 2)
      • 15. Wang, H.M., Liu, F., Mu, P.: ‘Joint GSVD-SVD precoding and power allocation for security of AF MIMO relay networks’. 2014 IEEE Int. Conf. on Communications (ICC), Dublin, Ireland, 2014, pp. 50835088.
    3. 3)
      • 3. Heath, R.W., Gonzalez-Prelcic, N., Rangan, S., et al: ‘An overview of signal processing techniques for millimeter wave MIMO systems’, IEEE J. Sel. Top. Signal Process., 2016, 10, (3), pp. 436453.
    4. 4)
      • 21. Chen, Z., Ding, Z., Dai, X.: ‘On the distribution of the squared generalized singular values and its applications’, IEEE Trans. Veh. Technol., 2018, 68, (1), pp. 10301034.
    5. 5)
      • 13. Senaratne, D., Tellambura, C.: ‘GSVD beamforming for two-user MIMO downlink channel’, IEEE Trans. Veh. Technol., 2013, 62, (6), pp. 25962606.
    6. 6)
      • 23. Barlow, J.L.: ‘More accurate bidiagonal reduction for computing the singular value decomposition’, SIAM J. Matrix Anal. Appl., 2001, 23, (3), pp. 761798.
    7. 7)
      • 20. Chen, Z., Ding, Z., Dai, X., et al: ‘Asymptotic performance analysis of GSVD-NOMA systems with a large-scale antenna array’, IEEE Trans. Wirel. Commun., 2018, 18, (1), pp. 575590.
    8. 8)
      • 10. Tomlinson, M.: ‘New automatic equaliser employing modulo arithmetic’, Electron. Lett., 1971, 7, (5), pp. 138139.
    9. 9)
      • 1. Kaye, A., George, D.: ‘Transmission of multiplexed PAM signals over multiple channel and diversity systems’, IEEE Trans. Commun. Technol., 1970, 18, (5), pp. 520526.
    10. 10)
      • 19. Ma, Z., Ding, Z., Fan, P., et al: ‘A general framework for MIMO uplink and downlink transmissions in 5G multiple access’. IEEE 83rd Vehicular Technology Conf., VTC Spring 2016, Nanjing, China, 15–18 May 2016, pp. 14.
    11. 11)
      • 14. Mei, W., Chen, Z., Fang, J.: ‘GSVD-based precoding in MIMO systems with integrated services’, IEEE Signal Process. Lett., 2016, 23, (11), pp. 15281532.
    12. 12)
      • 5. Wu, Y., Khisti, A., Xiao, C., et al: ‘A survey of physical layer security techniques for 5G wireless networks and challenges ahead’, IEEE J. Sel. Areas Commun., 2018, 36, (4), pp. 679695.
    13. 13)
      • 9. Costa, M.: ‘Writing on dirty paper (corresp.)’, IEEE Trans. Inf. Theory, 1983, 29, (3), pp. 439441.
    14. 14)
      • 18. Le, C.B., Do, D.T.: ‘Outage performance of backscatter NOMA relaying systems equipping with multiple antennas’, Electron. Lett., 2019, 55, pp. 10661067(1).
    15. 15)
      • 11. Harashima, H., Miyakawa, H.: ‘Matched-transmission technique for channels with intersymbol interference’, IEEE Trans. Commun., 1972, 20, (4), pp. 774780.
    16. 16)
      • 7. Bereeanu, M., Voicu, C., Halunga, S.: ‘AF relaying in a massive mu-MIMO OFDM system’. 2018 IEEE 24th Int. Symp. for Design and Technology in Electronic Packaging (SIITME), Constanta, Romania, 2018, pp. 226229.
    17. 17)
      • 26. Jeffrey, A., Zwillinger, D.: ‘Table of integrals, series, and products’ (Elsevier, America, 2007).
    18. 18)
      • 4. Abakasanga, E.G., Adegoke, E.I., Edwards, R.M.: ‘Evaluating signal detection techniques for 5G MIMO systems’. IET Conf. Proc., Loughborough, United Kingdom, 2018.
    19. 19)
      • 2. Agiwal, M., Roy, A., Saxena, N.: ‘Next generation 5G wireless networks: a comprehensive survey’, IEEE Commun. Surv. Tutor., 2016, 18, (3), pp. 16171655.
    20. 20)
      • 6. Li, B., Chen, L., Wei, G.: ‘Energy efficiency of IDF MIMO relay system with antenna selection under a holistic power model’. 2016 Sixth Int. Conf. on Information Science and Technology (ICIST), Da Nang, Vietnam, 2016, pp. 416420.
    21. 21)
      • 25. Tulino, A.M., Verdú, S.: ‘Random matrix theory and wireless communications’, Foundtrends Commun. inf. Theory, 2004, 1, (1), pp. 1182.
    22. 22)
      • 27. Appell, P.: ‘Sur les fonctions hypergéométriques de plusieurs variables: les polynomes d'Hermite et autres fonctions sphériques dans l'hyperespace’ (Gauthier-Villars, Paris, 1925).
    23. 23)
      • 17. Chen, C., Zhong, W., Yang, H., et al: ‘On the performance of MIMO-NOMA-based visible light communication systems’, IEEE Photonics Technol. Lett., 2018, 30, (4), pp. 307310.
    24. 24)
      • 24. Loan, C.V.: ‘Computing the CS and the generalized singular value decompositions’, Numer. Math., 1985, 46, (4), pp. 479491.
    25. 25)
      • 16. Ding, Z., Liu, Y., Choi, J., et al: ‘Application of non-orthogonal multiple access in LTE and 5G networks’, IEEE Commun. Mag., 2017, 55, (2), pp. 185191.
    26. 26)
      • 12. Li, A., Masouros, C.: ‘A two-stage vector perturbation scheme for adaptive modulation in downlink MU-MIMO’, IEEE Trans. Veh. Technol., 2016, 65, (9), pp. 77857791.
    27. 27)
      • 8. Zaher, M., El-Mahdy, A.: ‘Two-way full-duplex massive mimo relaying with correlated multi-antenna user pairs’. 2019 Fifth Int. Conf. on Frontiers of Signal Processing (ICFSP), Poitiers, France, 2019, pp. 5761.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-com.2020.0555
Loading

Related content

content/journals/10.1049/iet-com.2020.0555
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading