access icon free 3DEOR: an opportunity routing protocol using evidence theory appropriate for 3D urban environments in VANETs

The vehicular ad hoc network (VANET) is a promising technology to improve the comfort and safety of passengers, roads and urban traffic. Applications applied to VANETs require efficient routing protocols. Urban environments include tunnels, subways, overpasses, and multilevel highways, which indicate the multilevel information environment and specific conditions of radio channel dissemination. In this paper proposed a three-dimensional (3D) evidence theory based, opportunistic routing protocol, called 3DEOR, which address the above issues using a new hybrid criterion called PAL. The PAL criterion includes three metrics of packet delivery probability to compensate for unreliable dissemination environments, packet advancement appropriated to 3D environments to reduce the number of hop counts and level to improve link connectivity. Prioritise the relay set members based on the new criteria to select the best relay node. In cases where there is no certainty, the evidence theory can be a good choice for combining the three metrics of the PAL criterion. The simulation results show the superiority of the proposed protocol over the 3D link state aware geographic opportunistic (3DLSGO) and 3D greedy perimeter stateless routing (3DGPSR) protocols in network performance indices such as packet delivery rate, end-to-end delay and average hop count.

Inspec keywords: relay networks (telecommunication); information dissemination; routing protocols; probability; vehicular ad hoc networks

Other keywords: vehicular ad hoc network; opportunity routing protocol; VANET; evidence theory; urban traffic; packet advancement; three-dimensional opportunistic routing protocol; end-to-end delay; information dissemination environment; radio channel dissemination; PAL criterion; network performance indices; unreliable dissemination environments; relay set members; 3DEOR protocol; actual dissemination environment; multilevel information environment; link connectivity; packet delivery probability; packet routing protocol; 3DLSGO; 3DGPSR protocols; packet delivery rate; multilevel highways; flat environments; urban environments

Subjects: Mobile radio systems; Protocols; Communication network design, planning and routing; Other topics in statistics

References

    1. 1)
      • 1. Sharma, B., Sharma, M.S.P., Tomar, R.S.: ‘A Survey: Issues and Challenges of Vehicular Ad Hoc Networks (VANETs), 2019, Available at SSRN 3363555.
    2. 2)
      • 25. Zhu, L., Li, C., Xia, B., et al: ‘A hybrid routing protocol for 3-D vehicular ad hoc networks’, IEEE Syst. J., 2015, 11, (3), pp. 12391248.
    3. 3)
      • 14. Zhang, R., Cai, L.: ‘Joint AMC and packet fragmentation for error control over fading channels’, IEEE Trans. Veh. Technol., 2010, 59, (6), pp. 30703080.
    4. 4)
      • 5. Moridi, E., Barati, H.: ‘RMRPTS: a reliable multi-level routing protocol with tabu search in VANET’, Telecommun. Syst., 2017, 65, (1), pp. 127137.
    5. 5)
      • 13. Zhu, L., Li, C., Li, B., et al: ‘Geographic routing in multilevel scenarios of vehicular ad hoc networks’, IEEE Trans. Veh. Technol., 2015, 65, (9), pp. 77407753.
    6. 6)
      • 11. Zhang, F., Liu, H., Leung, Y.W., et al: ‘CBS: community-based bus system as routing backbone for vehicular ad hoc networks’, IEEE Trans. Mob. Comput., 2016, 16, (8), pp. 21322146.
    7. 7)
      • 30. Ghaffari, A.: ‘Hybrid opportunistic and position-based routing protocol in vehicular ad hoc networks’, J. Ambient Intell. Humanized Comput., 2020, 11, (4), pp. 15931603.
    8. 8)
      • 21. Cai, X., He, Y., Zhao, C., et al: ‘LSGO: link state aware geographic opportunistic routing protocol for VANETs’, EURASIP J. Wirel. Commun. Netw., 2014, 2014, (1), p. 96.
    9. 9)
      • 6. Yahiabadi, S.R., Barekatain, B., Raahemifar, K.: ‘TIHOO: an enhanced hybrid routing protocol in vehicular ad-hoc networks’, EURASIP J. Wirel. Commun. Netw., 2019, 2019, (1), p. 192.
    10. 10)
      • 10. Brummer, A., Deinlein, T., Hielscher, K.S., et al: ‘Measurement-based evaluation of environmental diffraction modeling for 3D vehicle-to-X simulation’. 2018 IEEE Vehicular Networking Conf. (VNC) IEEE, Taipei, Taiwan, 2018 December18.
    11. 11)
      • 3. Wahid, I., Ikram, A.A., Ahmad, M., et al: ‘State of the art routing protocols in VANETs: a review’, Procedia Comput. Sci., 2018, 130, pp. 689694.
    12. 12)
      • 8. Karimi, R., Shokrollahi, S.: ‘PGRP: predictive geographic routing protocol for VANETs’, Comput. Netw., 2018, 141, pp. 6781.
    13. 13)
      • 7. Goudarzi, F., Asgari, H., Al-Raweshidy, H.S.: ‘Traffic-aware VANET routing for city environments–A protocol based on ant colony optimization’, IEEE Syst. J., 2018, 13, (1), pp. 571581.
    14. 14)
      • 12. Zhang, X., Wang, Z., Jiang, X.: ‘A realistic spatial-distribution-based connectivity-aware routing protocol in multilevel scenarios of urban VANETs’, IEEE Commun. Lett., 2018, 22, (9), pp. 19061909.
    15. 15)
      • 4. Boussoufa-Lahlah, S., Semchedine, F., Bouallouche-Medjkoune, L.: ‘Geographic routing protocols for vehicular ad hoc NETworks (VANETs): a survey’, Veh. Commun., 2018, 11, pp. 2031.
    16. 16)
      • 28. Li, N., Martinez-Ortega, J.F., Diaz, V.H., et al: ‘Probability prediction-based reliable and efficient opportunistic routing algorithm for VANETs’, IEEE/ACM Trans. Netw. (TON), 2018, 26, (4), pp. 19331947.
    17. 17)
      • 22. Zorzi, M., Rao, R.R.: ‘Geographic random forwarding (geRaF) for ad hoc and sensor networks: energy and latency performance’, IEEE Trans. Mob. Comput., 2003, 2, (4), pp. 349365.
    18. 18)
      • 17. Ng, S.C., Zhang, W., Zhang, Y., et al: ‘Analysis of access and connectivity probabilities in vehicular relay networks’, IEEE J. Sel. Areas Commun., 2010, 29, (1), pp. 140150.
    19. 19)
      • 27. Zhang, D., Zhang, T., Liu, X.: ‘Novel self-adaptive routing service algorithm for application in VANET’, Appl. Intell., 2019, 49, (5), pp. 18661879.
    20. 20)
      • 23. Lin, Q., Li, C., Wang, X., et al: ‘A three-dimensional scenario oriented routing protocol in vehicular ad hoc networks’. 2013 IEEE 77th Vehicular Technology Conf. (VTC Spring) IEEE, Dresden, Germany, 2013 June15.
    21. 21)
      • 24. He, Y., Cai, X., Zhang, Y., et al: ‘Routing protocol for complex three-dimensional vehicular ad hoc networks’. 2014 Int. Conf. on Connected Vehicles and Expo (ICCVE) IEEE, Vienna, Austria, 2014 November739744.
    22. 22)
      • 15. Boban, M., Vinhoza, T.T., Ferreira, M., et al: ‘Impact of vehicles as obstacles in vehicular ad hoc networks’, IEEE J. Sel. Areas Commun., 2010, 29, (1), pp. 1528.
    23. 23)
      • 20. Karp, B., Kung, H.T.: ‘GPSR: greedy perimeter stateless routing for wireless networks’. Proc. of the 6th Annual Int. Conf. on Mobile Computing and Networking ACM, Boston, MA, USA, 2000 August243254.
    24. 24)
      • 29. Kabbaj, S., Rahman, A.U., Malik, A.W., et al: ‘Time-bound single-path opportunistic forwarding in disconnected industrial environments’, Veh. Commun., 2020, 100302.
    25. 25)
      • 16. Wang, X., Lin, X., Wang, Q., et al: ‘Mobility increases the connectivity of wireless networks’, IEEE/ACM Trans. Netw. (TON), 2013, 21, (2), pp. 440454.
    26. 26)
      • 2. Dressler, F., Hartenstein, H., Altintas, O., et al: ‘Inter-vehicle communication: quo vadis’, IEEE Commun. Mag., 2014, 52, (6), pp. 170177.
    27. 27)
      • 31. VanetMobiSim Project, http://vanet.eurecom.fr.
    28. 28)
      • 18. Das, D.: ‘An efficient opportunistic routing algorithm in vehicular adhoc networks (VANETs)’. 2019 Second Int. Conf. on Advanced Computational and Communication Paradigms (ICACCP) IEEE, Gangtok, India, 2019 February15.
    29. 29)
      • 9. Bohlooli, A., Jamshidi, K.: ‘A GPS-free method for vehicle future movement directions prediction using SOM for VANET’, Appl. Intell., 2012, 36, (3), pp. 685697.
    30. 30)
      • 32. Cheng, L., Henty, B.E., Stancil, D.D., et al: ‘Mobile vehicle-to-vehicle narrow-band channel measurement and characterization of the 5.9 GHz dedicated short range communication (DSRC) frequency band’, IEEE J. Sel. Areas Commun., 2007, 25, (8), pp. 15011516.
    31. 31)
      • 26. Jin, Z., Ji, Z., Su, Y.: ‘An evidence theory based opportunistic routing protocol for underwater acoustic sensor networks’, IEEE Access, 2018, 6, pp. 7103871047.
    32. 32)
      • 19. Ghaffari, A.: ‘Hybrid opportunistic and position-based routing protocol in vehicular ad hoc networks’, J. Ambient Intell. Humanized Comput., 2019, 11, (4), pp. 111.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-com.2020.0473
Loading

Related content

content/journals/10.1049/iet-com.2020.0473
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading