Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Hybrid deep learning-based throughput analysis for UAV-assisted cellular networks

Mobile users are interested in utilising high network capabilities without time and place constraints. However, with a high level of interest in the usage of mobile phones and internet facilities, the limited capacity of terrestrial base stations (BSs) is unbalanced. As a potential alternative to BSs, unmanned aerial vehicles (UAVs) are emerging as a means of transmitting wireless data to ground mobile users. As an air-to-ground communication network, the real UAVs deployed and collected communication data from ground mobile users. The main objective of this study is to analyse and evaluate user throughput, interference, and power transmission when the UAVs are at different heights. The parameters used include the locations of the UAVs and users, the altitudes and elevation angles from the users to UAVs, signal-to-noise-ratio, throughput values, the categories of line-of-sight, and non-line-of-sight links. Furthermore, K-means used as a clustering method for class identification, long short-term memory (LSTM), and gated recurrent unit (GRU) to analyse and evaluate system performance. The system's performance was compared with a multi-layer perceptron approach. The evaluation results show that the proposed LSTM–GRU provides reliable and encouraging performance with low computational complexity, which is appropriate for heterogeneous networks.

References

    1. 1)
      • 25. Wang, W., Xu, S., Yan, S., et al: ‘An efficient wideband Spectrum sensing algorithm for unmanned aerial vehicle communication networks’, IEEE Internet Things J., 2019, 6, (2), pp. 17681780.
    2. 2)
      • 35. Tatino, C., Pappas, N., Malanchini, I., et al: ‘Throughput analysis for relay-assisted millimeter-wave wireless networks’. IEEE Globecom Workshops (GC Wkshps), Abu Dhabi, United Arab Emirates, United Arab Emirates, February 2019, pp. 17.
    3. 3)
      • 10. Bor-Yaliniz, I., Yanikomeroglu, H.: ‘The new frontier in RAN heterogeneity: multi-tier drone-cells’, IEEE Commun. Mag., 2016, 54, (11), pp. 4855.
    4. 4)
      • 19. Ren, H., Song, Y., Liu, J., et al: ‘A deep learning approach to the prediction of short-term traffic accident risk’, researchgate.net, arXiv preprint arXiv, 2017, 1710, (09543), pp. 15.
    5. 5)
      • 24. Akdeniz, M.R., Liu, Y., Samimi, M.K., et al: ‘Millimeter-wave channel modeling and cellular capacity evaluation’, IEEE J. Sel. Areas Commun., 2014, 32, (6), pp. 11641179.
    6. 6)
      • 18. Yayeh, Y., Lin, H.-P., Adege, B., et al: ‘UAV positioning for throughput maximization using deep learning approaches’, Sensors (Basel), 2019, 19, (12), p. 2775.
    7. 7)
      • 15. Azari, M., Rosas, F., Chen, K.-C., et al: ‘Ultra-reliable UAV communication using altitude and cooperation diversity’, IEEE Trans. Commun., 2018, 66, (1), pp. 330344.
    8. 8)
      • 34. Xu, Y., Shokri-Ghadikolaei, H., Fischione, C.: ‘Distributed association and relaying with fairness in millimeter-wave networks’, IEEE Trans. Wirel. Commun., 2016, 15, (12), pp. 79557970.
    9. 9)
      • 2. Qiu, J., Grace, D., Ding, G., et al: ‘Air-ground heterogeneous networks for 5G and beyond via integrating high and low altitude platforms’, IEEE Wirel. Commun., 2019, 26, (6), pp. 140148.
    10. 10)
      • 33. Kwon, S., Widmer, J.: ‘Relay selection for mmWave communications’. IEEE 28th Annual Int. Symp. on Personal, Indoor, and Mobile Radio Communications (PIMRC), Montreal, QC, Canada, February 2017, pp. 16.
    11. 11)
      • 36. He, R., Ai, B., Molisch, A.F., et al: ‘Clustering enabled wireless channel modeling using big data algorithms’, IEEE Commun. Mag., 2018, 56, (5), pp. 177183.
    12. 12)
      • 40. Sirait, K., Tulus Nababan, B.: ‘K-Means algorithm performance analysis with determining the value Of starting centroid with random and KD-tree method’. Journal of Physics Conf. Ser., vol.930, no. (1), Medan, Sumatera Utara, Indonesia, December 2017, pp. 16.
    13. 13)
      • 23. Sharma, P.K., Kim, D.I.: ‘Coverage probability of 3-D Mobile UAV networks’, IEEE Wirel. Commun. Lett., 2019, 8, (1), pp. 97100.
    14. 14)
      • 12. Zeng, Y., Zhang, R., Lim, J.: ‘Throughput maximization for UAV-enabled Mobile relaying systems’, IEEE Trans. Commun., 2016, 64, (12), pp. 49834996.
    15. 15)
      • 37. Kovacs, I., Amorim, R., Nguyen, C., et al: ‘Interference analysis for UAV connectivity over LTE using aerial radio measurements’. IEEE 86th Vehicular Technology Conf. (VTC-Fall), Toronto, ON, Canada, February 2018, pp. 16.
    16. 16)
      • 38. Esrafilian, O., Gesbert, D.: ‘3d city map reconstruction from UAV-based radio measurements’. GLOBECOM IEEE Global Communications Conf., Singapore, January 2018, pp. 16.
    17. 17)
      • 27. Goodfellow, I., Bengio, Y., Courville, A., et al: ‘Deep learning’, vol. 22, no. (4) (MIT Press, Cambridge, 2016, 1st edn.), 22, (4), pp. 352354.
    18. 18)
      • 3. Kalantari, E., Yanikomeroglu, H., Yongacoglu, A.: ‘On the number and 3D placement of drone base stations in wireless cellular networks’. IEEE 84th Vehicular Technology Conf. (VTC-Fall), Montreal, Canada, September 2016, pp. 16.
    19. 19)
      • 6. Chetlur, V., Dhillon, S.: ‘Downlink coverage analysis for a finite 3D wireless network of unmanned aerial vehicles’, IEEE Trans. Commun., 2017, 65, (10), pp. 5434558.
    20. 20)
      • 30. Bor-Yaliniz, I., El-Keyi, A., Yanikomeroglu, H.: ‘Efficient 3-D placement of an aerial base station in next-generation cellular networks’. IEEE Int. Conf. on Communications (ICC), Kuala Lumpur, Malaysia, July 2016, pp. 15.
    21. 21)
      • 31. Mozaffari, M., Saad, W., Bennis, M., et al: ‘Efficient deployment of multiple unmanned aerial vehicles for optimal wireless coverage’, IEEE Commun. Lett., 2016, 20, (8), pp. 16471650.
    22. 22)
      • 20. Azzouni, A., Pujolle, G.: ‘A long short-term memory recurrent neural network framework for network traffic matrix prediction’, arXiv preprint arXiv, 2017, 1705, (05690), pp. 16.
    23. 23)
      • 22. Umeh, O., Akpado, K., J., O.-I., et al: ‘Throughput and delay analysis in a real-time network’, Int. J. Eng. Appl. Sci., 2015, 2, (12), p. 33.
    24. 24)
      • 29. Jürgen, S., ‘Deep learning in neural networks: an overview’, Elsevier Ltd., Amsterdam, 2015, 61, (1404), pp. 85117.
    25. 25)
      • 32. Kouhdaragh, V., Verde, F., Gelli, G., et al: ‘On the application of machine learning to the design of UAV-based 5G radio access networks’, Electronics, 2020, 9, (4), p. 689.
    26. 26)
      • 8. He, H., Zhang, S., Zeng, Y., et al: ‘Joint altitude and beamwidth optimization for UAV-enabled multiuser communications’, IEEE Commun. Lett., 2018, 22, (2), pp. 344347.
    27. 27)
      • 16. Zeng, Y., Zhang, R.: ‘Energy-efficient UAV communication with trajectory optimization’, IEEE Trans. Wirel. Commun., 2017, 16, (6), pp. 37473760.
    28. 28)
      • 13. Lyu, J., Zeng, Y., Zhang, R., et al: ‘Placement optimization of UAV-mounted Mobile base stations’, IEEE Commun. Lett., 2017, 21, (3), pp. 604607.
    29. 29)
      • 17. Kalantari, E., Shakir, Z., Yanikomeroglu, H., et al: ‘Backhaul-aware robust 3D drone placement in 5G + wireless networks’. IEEE Int. Conf. on Communications Workshops (ICC Workshops), Paris, France, July 2017, pp. 109114.
    30. 30)
      • 1. Li, P., Xu, J.: ‘Placement optimization for UAV enabled wireless networks with multi-hop backhauls’, J. Commun. Inf. Netw., 2018, 3, (4), pp. 6473.
    31. 31)
      • 39. Liu, S., Wei, Z., Guo, Z., et al: ‘Performance analysis of UAVs assisted data collection in wireless sensor network’. IEEE 87th Vehicular Technology Conf. (VTC Spring), Porto, Portugal, July 2018, pp. 15.
    32. 32)
      • 14. Alzenad, M., El-Keyi, A., Lagum, F., et al: ‘3-D placement of an unmanned aerial vehicle base station (UAV-BS) for energy-efficient maximal coverage’, IEEE Wirel. Commun. Lett., 2017, 6, (4), pp. 434437.
    33. 33)
      • 26. Chung, J., Gulcehre, C., Cho, K., et al: ‘Empirical evaluation of gated recurrent neural networks on sequence modeling’, arXiv preprint arXiv, 2014, 1412, (3555), pp. 34.
    34. 34)
      • 7. Wang, H., Zhao, H., Zhou, L., et al: ‘Deployment algorithm for minimum unmanned aerial vehicles towards optimal coverage and interconnections’. IEEE Wireless Communications and Networking Conf. Workshops (WCNCW), Barcelona, Spain, May 2018, pp. 72277.
    35. 35)
      • 11. ur Rahman, S., Cho, Y.-Z.: ‘UAV positioning for throughput maximization’, EURASIP J. Wirel. Commun. Netw., 2018, 2018, (31), pp. 115.
    36. 36)
      • 4. Qiu, J., Grace, D., Ding, G., et al: ‘Block chain-based secure Spectrum trading for unmanned-aerial-vehicle-assisted cellular networks: an Operator's perspective’, IEEE Internet Things J., 2020, 7, (1), pp. 451466.
    37. 37)
      • 5. Zhang, Q., Mozaffari, M., Saad, W., et al: ‘Machine learning for predictive On-demand deployment of UAVs for wireless communications’. IEEE Global Communications Conf. (GLOBECOM), Abu Dhabi, United Arab Emirates, United Arab Emirates, December 2018, pp. 16.
    38. 38)
      • 28. Najafabadi, M., Villanustre, F., Khoshgoftaar, M., et al: ‘Deep learning applications and challenges in big data analytics’, J. Big Data, 2015, 2, (1), p. 1.
    39. 39)
      • 21. Adege, B., Lin, H.-P., Tarekegn, B., et al: ‘An indoor and outdoor positioning using a hybrid of support vector machine and deep neural network algorithms’, Sensors, 2018, 2018, (1253752), pp. 112.
    40. 40)
      • 9. Mozaffari, M.: ‘Wireless Communications and Networking with Unmanned Aerial Vehicles: Fundamentals, Deployment, and Optimization’. PhD thesis, Virginia Tech., 2018.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-com.2020.0397
Loading

Related content

content/journals/10.1049/iet-com.2020.0397
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address