Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Joint communication and radar sensing in 5G mobile network by compressive sensing

Radio sensing can be integrated with communication in what the authors call future perceptive mobile networks. Due to the complicated signal structure, it is challenging to estimate sensing parameters such as delay, angle of arrival, and Doppler when joint communication and radar/radio sensing is applied in perceptive mobile networks. Radio sensing with signals compatible with a fifth-generation (5G) new radio standard using one-dimension (1D) to 3D compressive sensing (CS) techniques under 5G channel conditions is studied. In the case of 1D–3D CS techniques, they formulate the parameter estimation as a sparse signal recovery problem. These algorithms demonstrate respective advantages, but also show shortcomings in dealing with clustered channels. To effectively exploit the cluster structure in multipath channels, they also propose a 2D cluster Kronecker CS algorithm for significantly improved sensing parameter estimation via introducing a prior probability distribution. Simulation results are provided and they focus the respective advantages and disadvantages of these techniques that validate the effectiveness of the proposed algorithms.

References

    1. 1)
      • 14. Sturm, C., Wiesbeck, W.: ‘Waveform design and signal processing aspects for fusion of wireless communications and radar sensing’, Proc. IEEE, 2011, 99, (7), pp. 12361259.
    2. 2)
      • 27. 3GPP TR 38. 913 ‘Study on scenarios and requirements for next generation access technologies’, V1500, June 2018,.
    3. 3)
    4. 4)
      • 29. Yu, L., Sun, H., Zheng, G., et al: ‘Model based bayesian compressive sensing via local beta process’, Signal Process, 2015, 108, (C), pp. 259271.
    5. 5)
      • 30. Yu, L., Wei, C., Jia, J., et al: ‘Compressive sensing for cluster structured sparse signals: variational bayes approach’, IET Signal Process., 2016, 10, (7), pp. 770779.
    6. 6)
      • 12. Rossler, C.W., Ertin, E., Moses, R.L.: ‘A software defined radar system for joint communication and sensing’. 2011 IEEE Radar Conf. (RADAR), Kansas City, MO, USA, 2011, pp. 10501055.
    7. 7)
      • 9. Saruthirathanaworakun, R., Peha, J.M., Correia, L.M.: ‘Opportunistic sharing between rotating radar and cellular’, IEEE J. Sel. Areas Commun., 2012, 30, (10), pp. 19001910.
    8. 8)
      • 38. Grant, C.S., Moon, T.K., Gunther, J.H., et al: ‘Detection of amorphously shaped objects using spatial information detection enhancement (SIDE)’, IEEE J. Sel. Top. Appl. Earth Obser. Remote Sens., 2012, 5, (2), pp. 478487.
    9. 9)
      • 2. Rahman, M.L., Cui, P., Zhang, J.A., et al: ‘Joint communication and radar sensing in 5G mobile network by compressive sensing’. 2019 19th Int. Symp. on Communications and Information Technologies (ISCIT), Vietnam, 2019, pp. 599604.
    10. 10)
      • 35. Ji, S., Xue, Y., Carin, L.: ‘Bayesian compressive sensing’, IEEE Trans. Signal Process., 2008, 56, (6), pp. 23462356.
    11. 11)
      • 32. Jiao, C., Zhang, Z., Zhong, C., et al: ‘An indoor mmwave joint radar and communication system with active channel perception’. 2018 IEEE Int. Conf. on Communications (ICC), Kansas City, USA, 2018, pp. 16.
    12. 12)
      • 11. Zheng, L., Lops, M., Eldar, Y.C., et al: ‘Radar and communication coexistence: an overview: a review of recent methods’, IEEE Signal Process. Mag., 2019, 36, (5), pp. 8599.
    13. 13)
      • 28. Lim, C.W., Wakin, M.B.: ‘Recovery of periodic clustered sparse signals from compressive measurements’. 2014 IEEE Global Conf. on Signal and Information Processing (GlobalSIP), Atlanta, 2014, pp. 409413.
    14. 14)
      • 20. Braun, M.: ‘OFDM Radar Algorithms in Mobile Communication Networks’. PhD thesis, Karlsruher Institut für Technologie (KIT), 2014.
    15. 15)
      • 17. Arnold, B.T., Jensen, M.A.: ‘The effect of antenna mutual coupling on MIMO radar system performance’, IEEE Trans. Antennas Propag., 2019, 67, (3), pp. 14101416.
    16. 16)
      • 33. 3GPP TS 38. 211: ‘Physical channels and modulation’. V1520, July, 2018.
    17. 17)
      • 37. Caiafa, C.F., Cichocki, A.: ‘Computing sparse representations of multidimensional signals using Kronecker bases’, Neural Comput., 2013, 25, (1), pp. 186220.
    18. 18)
      • 45. Sun, B., Guo, Y., Fang, G., et al: ‘An efficient dictionary refinement algorithm for multiple target counting and localization in wireless sensor networks’, Int. J. Distrib. Sensor Netw., 2017, 13, (8), pp. 112.
    19. 19)
      • 42. Hakobyan, G., Yang, B.: ‘A novel OFDM-MIMO radar with non-equidistant subcarrier interleaving and compressed sensing’. 2016 17th Int. Radar Symp. (IRS), Krakow, Poland, 2016, pp. 15.
    20. 20)
      • 22. Rong, Y., Chiriyath, A.R., Bliss, D.W.: ‘Multiple-antenna multiple-access joint radar and communications systems performance bounds’. 2017 51st Asilomar Conf. on Signals, Systems, and Computers, Pacific Grove, CA, USA, 2017, pp. 12961300.
    21. 21)
      • 19. Alibakhshikenari, M., Virdee, B.S., See, C.H., et al: ‘Study on isolation improvement between closely-packed patch antenna arrays based on fractal metamaterial electromagnetic bandgap structures’, IET Microw. Antennas Propag., 2018, 12, (14), pp. 22412247.
    22. 22)
      • 7. Martone, A.F., Gallagher, K.A., Sherbondy, K.D.: ‘Joint radar and communication system optimization for spectrum sharing’. 2019 IEEE Radar Conf. (RadarConf), Boston, 2019, pp. 16.
    23. 23)
      • 46. Bajwa, W.U., Haupt, J., Sayeed, A.M., et al: ‘Compressed channel sensing: a new approach to estimating sparse multipath channels’, Proc. IEEE, 2010, 98, (6), pp. 10581076.
    24. 24)
      • 41. Bader, B.W., Kolda, T.G.: ‘Efficient MATLAB computations with sparse and factored tensors’, SIAM J. Sci. Comput., 2007, 30, (1), pp. 205231.
    25. 25)
      • 6. Rahman, M.L., Zhang, J.A., Huang, X., et al: ‘Gaussian-mixture-model based clutter suppression in perceptive mobile networks’, IEEE Commun. Lett., 2021, 25, (1), pp. 152156.
    26. 26)
      • 44. Tang, G., Bhaskar, B.N., Shah, P., et al: ‘Compressed sensing off the grid’, IEEE Trans. Inf. Theory, 2013, 59, (11), pp. 74657490.
    27. 27)
      • 8. Liu, F., Masouros, C., Li, A., et al: ‘MU-MIMO communications with MIMO radar: from co-existence to joint transmission’, IEEE Trans. Wirel. Commun., 2018, 17, (4), pp. 27552770.
    28. 28)
      • 18. Alibakhshikenari, M., Virdee, B.S., Shukla, P., et al: ‘Interaction between closely packed array antenna elements using meta-surface for applications such as MIMO systems and synthetic aperture radars’, Radio Sci., 2018, 53, (11), pp. 13681381.
    29. 29)
      • 36. Duarte, M.F., Baraniuk, R.G.: ‘Kronecker compressive sensing’, IEEE Trans. Image Process., 2012, 21, (2), pp. 494504.
    30. 30)
      • 4. Zhang, J.A., Huang, X., Guo, Y.J., et al: ‘Signal stripping based sensing parameter estimation in perceptive mobile networks’. 2017 IEEE-APS Topical Conf. on Antennas and Propagation in Wireless Communications (APWC), Italy, 2017, pp. 6770.
    31. 31)
      • 39. Yu, L., Sun, H., Barbot, J.P., et al: ‘Bayesian compressive sensing for cluster structured sparse signals’, Signal Process., 2012, 92, (1), pp. 259269.
    32. 32)
      • 43. Fannjiang, A., Tseng, H.C.: ‘Compressive radar with off-grid targets: a perturbation approach’, Inverse Probl., 2013, 29, (5), p. 054008.
    33. 33)
      • 24. Friedlander, B.: ‘Waveform design for MIMO radars’, IEEE Trans. Aerosp. Electron. Syst., 2007, 43, (3), pp. 12271238.
    34. 34)
      • 3. Zhang, J.A., Cantoni, A., Huang, X., et al: ‘Framework for an innovative perceptive mobile network using joint communication and sensing’. 2017 IEEE 85th Vehicular Technology Conf. (VTC Spring), Sydney, Australia, 2017, pp. 15.
    35. 35)
      • 5. Rahman, M.L., Zhang, J.A., Huang, X., et al: ‘Analog antenna array based sensing in perceptive mobile networks’. 2017 IEEE-APS Topical Conf. on Antennas and Propagation in Wireless Communications (APWC), Italy, 2017, pp. 199202.
    36. 36)
      • 31. Zhang, Z., Rao, B.D.: ‘Recovery of block sparse signals using the framework of block sparse Bayesian learning’. 2012 IEEE Int. Conf. on Acoustics, Speech and Signal Processing (ICASSP), Kyoto, Japan, 2012, pp. 33453348.
    37. 37)
      • 15. Kumari, P., Choi, J., Prelcic, N.G., et al: ‘IEEE 802.11ad-based radar: an approach to joint vehicular communication-radar system’, IEEE Trans. Veh. Technol., 2017, PP, (99), pp. 11.
    38. 38)
      • 25. Hack, D.E., Patton, L.K., Himed, B., et al: ‘Detection in passive MIMO radar networks’, IEEE Trans. Signal Process., 2014, 62, (11), pp. 29993012.
    39. 39)
      • 10. Chiriyath, A.R., Paul, B., Bliss, D.W.: ‘Radar-communications convergence: coexistence, cooperation, and co-design’, IEEE Trans. Cognit. Commun. Netw., 2017, 3, (1), pp. 112.
    40. 40)
      • 34. Shutin, D.: ‘Cluster analysis of wireless channel impulse responses’. Int. Zurich Seminar on Communications, 2004, Zurich, Switzerland, 2004, pp. 124127.
    41. 41)
      • 40. Shekaramiz, M., Moon, T.K., Gunther, J.H.: ‘Bayesian compressive sensing of sparse signals with unknown clustering patterns’, Entropy, 2019, 21, (3), p. 247.
    42. 42)
      • 23. Liu, Y., Liao, G., Xu, J., et al: ‘Adaptive OFDM integrated radar and communications waveform design based on information theory’, IEEE Commun. Lett., 2017, 21, (10), pp. 21742177.
    43. 43)
      • 16. Alibakhshikenari, M., Virdee, B.S., See, C.H., et al: ‘Study on antenna mutual coupling suppression using integrated metasurface isolator for SAR and MIMO applications’. 2018 15th European Radar Conf. (EuRAD), Spain, 2018, pp. 405408.
    44. 44)
      • 26. Zheng, L., Wang, X.: ‘Super-resolution delay-doppler estimation for OFDM passive radar’, IEEE Trans. Signal Process., 2017, 65, (9), pp. 21972210.
    45. 45)
      • 21. Wang, X., Hassanien, A., Amin, M.G.: ‘Dual-function MIMO radar communications system design via sparse array optimization’, IEEE Trans. Aerosp. Electron. Syst., 2019, 55, (3), pp. 12131226.
    46. 46)
      • 13. Hassanien, A., Himed, B., Amin, M.G.: ‘Transmit/receive beamforming design for joint radar and communication systems’. 2018 IEEE Radar Conf. (RadarConf18), Oklahoma City, 2018, pp. 14811486.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-com.2020.0384
Loading

Related content

content/journals/10.1049/iet-com.2020.0384
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address