access icon free Performance evaluation of heterogeneous wireless information and power networks

In this study, the performance of downlink simultaneous wireless information and power transfer (SWIPT) networks over Nakagami-m fading is analysed. The SWIPT network is modelled as a two-tier heterogeneous network, where one tier is the information transmission network and the other is the power transmission network. The seamless integration enables both data and energy to be transferred from access points to the users. Using the stochastic geometry theory, the expressions for outage probability at the information receiver are derived in decoupled and integrated SWIPT networks. Also, the average harvested energy at the power receiver is derived assuming a non-linear energy harvesting model. Simulation results validate the analytical expressions and the impacts of various system parameters on the SWITP performance are investigated.

Inspec keywords: inductive power transmission; stochastic processes; geometry; telecommunication network reliability; radiofrequency power transmission; energy harvesting; probability

Other keywords: outage probability; information transmission network; nonlinear energy harvesting model; power networks; two-tier heterogeneous network; stochastic geometry theory; downlink simultaneous wireless information; heterogeneous wireless information; SWIPT network

Subjects: Combinatorial mathematics; Reliability; Other topics in statistics; Wireless power transmission; Energy harvesting; Energy harvesting

References

    1. 1)
      • 21. Haenggi, M.: ‘Stochastic geometry for wireless networks’ (Cambridge Univ. Press, New York, NY, USA, 2013).
    2. 2)
      • 24. Veetil, S.T., Kuchi, K., Krishnaswamy, A.K., et al: ‘Coverage and rate in cellular networks with multi-user spatial multiplexing’. 2013 IEEE Int. Conf. on Commun. (ICC), Budapest, Hungary, 2013, pp. 58555859.
    3. 3)
      • 11. Joshi, S., Mallik, R.K.: ‘Coverage probability analysis in a device-to-device network: interference functional and laplace transform based approach’, IEEE Commun. Lett., 2019, 23, pp. 466469.
    4. 4)
      • 26. Shang, B., Zhao, L., Chen, K., et al: ‘Energy efficient D2D-assisted offloading with wireless power transfer’. IEEE Global Commun. Conf., Singapore, 2017, 19, 167203.
    5. 5)
      • 25. Bai, T., Heath, R.W.: ‘Coverage and rate analysis for millimeter-wave cellular networks’, IEEE Trans. on Wirel. Commun., 2014, 14, pp. 11001114.
    6. 6)
      • 19. Zhou, F., Chu, Z., Sun, H., et al: ‘Artificial noise aided secure cognitive beamforming for cooperative MISO-NOMA using SWIPT’, IEEE Journal on Selected Areas in Commun., 2018, 36, pp. 918931.
    7. 7)
      • 4. Guo, J., Durrani, S., Zhou, X., et al: ‘Outage probability of ad hoc networks with wireless information and power transfer’, IEEE Wirel. Commun. Lett., 2015, 4, pp. 409412.
    8. 8)
      • 10. Hunter, A.M., Andrews, J.G., Weber, S.: ‘Transmission capacity of ad hoc networks with spatial diversity’, IEEE Trans. on Wirel. Commun., 2008, 7, pp. 50585071.
    9. 9)
      • 15. Khawar, A., Abdelhadi, A., Clancy, T.C.: ‘Coexistence analysis between radar and cellular system in LoS channel’, IEEE Antennas Wirel. Propag. Lett., 2016, 15, pp. 972975.
    10. 10)
      • 14. Chen, S., Jin, H., Li, Y., et al: ‘Performance analysis of two-tier femtocell networks in nakagami-m fading channels’. 2013 Int. Conf. on Wireless Commun. and Signal Proc., Hangzhou, 2013, pp. 15.
    11. 11)
      • 1. Hussein, H.S., Elsayed, M., Mohamed, U.S.: ‘Spectral efficient spatial modulation techniques’, IEEE Access, 2019, 7, pp. 14541469.
    12. 12)
      • 5. Huang, K., Lau, V.K.N.: ‘Enabling wireless power transfer in cellular networks: architecture, modeling and deployment’, IEEE Trans. Wireless Commun., 2014, 13, pp. 902912.
    13. 13)
      • 7. Chen, Y., da Costa, D.B., Ding, H., et al: ‘Interference analysis in wireless power transfer’, IEEE Commun. Lett., 2017, 21, pp. 23182321.
    14. 14)
      • 6. Munari, A., Simic, L., Petrova, M.: ‘Stochastic geometry interference analysis of radar network performance’, IEEE Commun. Lett., 2018, 22, pp. 23622365.
    15. 15)
      • 13. Joshi, S., Mallik, R.K.: ‘Analysis of dedicated and shared device-to-device communication in cellular networks over nakagami-m fading channels’, IET Commun., 2017, 11, pp. 16001609.
    16. 16)
      • 8. Park, J, Clerckx, B, Song, C, et al: ‘An analysis of the optimum node density for simultaneous wireless information and power transfer in ad hoc networks’, IEEE Trans. Veh. Techn., 2017, 67, pp. 27132726.
    17. 17)
      • 12. Jin, N., Yang, L., Jin, X., et al: ‘Performance analysis of wireless energy harvesting cooperative system with precoding spatial modulation’, IET Comm., 2019, 13, pp. 23692374.
    18. 18)
      • 18. Yu, Z., Chi, K., Hu, P., et al: ‘Energy provision minimization in wireless powered communication networks with node throughput requirement’, IEEE Trans. on Veh. Techn., 2019, 68, pp. 70577070.
    19. 19)
      • 16. Praneeth Varma, G.V.S.S., Sharma, G.V.V., Kumar, A.: ‘Closed-form approximations for coverage and rate in a multi-tier heterogeneous network in nakagami-m fading’. 2018 24th National Conf. on Commun. (NCC), Hyderabad, 2018, 16.
    20. 20)
      • 9. Park, J.: ‘Outage probability of simultaneous wireless information and power transfer in heterogeneous information/energy ad hoc networks’. Int. Conf. on Elec. Inform. and Commun. (ICEIC), Honolulu, HI, 2018, pp. 14.
    21. 21)
      • 20. Zhang, X., Wang, Y., Zhou, F., et al: ‘Robust resource allocation for MISO cognitive radios networks under two practical non-linear energy harvesting model’, IEEE Commun. Lett., 2018, 22, pp. 18741877.
    22. 22)
      • 3. Zhang, G., Yang, L., Li, X., et al: ‘Signal and artificial noise beamforming for secure simultaneous wireless information and power transfer multiple-input multiple-output relaying systems’, IET Commun, 2016, 10, pp. 796804.
    23. 23)
      • 17. Liu, W., Zhou, X., Durrani, S., et al: ‘SWIPT with practical modulation and RF energy harvesting sensitivity’. Proc. IEEE Int. Conf. Commun. (ICC), Kuala Lumpur, 2016, pp. 17.
    24. 24)
      • 2. Thangaraj, C.A., Velkennedy, A., Ponmani, S.: ‘Simultaneous wireless information and power transfer in energy-augmented amplify and forward cooperative cognitive networks’, IET Commun., 2016, 13, pp. 21862191.
    25. 25)
      • 22. Kim, Y., Lee, T., Kim, D.: ‘Joint information and power transfer in SWIPT-enabled CRFID networks’, IEEE Wireless Commun. Lett., 2018, 7, pp. 186189.
    26. 26)
      • 23. Andrews, J.G., Baccelli, F., Ganti, R.K.: ‘A tractable approach to coverage and rate in cellular networks’, IEEE Trans. on Commun., 2011, 59, pp. 31223134.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-com.2020.0378
Loading

Related content

content/journals/10.1049/iet-com.2020.0378
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading