access icon free Computation offloading in cognitive radio NOMA-enabled multi-access edge computing systems

The explosive growth of end devices and mobile applications calls for novel schemes that can enable computation-hungry applications at small end-devices and meet the massive connectivity requirement. Cognitive radio (CR), non-orthogonal multiple access (NOMA) and multi-access edge computing (MEC) are envisioned as the key technologies in fifth-generation and beyond. In this work, the authors introduce the concept of CR-NOMA in MEC offloading, where a secondary user (SU) can utilise the spectrum allocated to a primary user (PU) to offload its computation task to the MEC server for remote execution. For the spectrum utilisation, an equation to specify the minimum transmit power that must be allocated to the PU is derived. The authors also develop an algorithm to determine the offloading decision (i.e. offloading or not) and the paired PU (i.e. subcarrier used for computation offloading) for SUs, using one-to-one matching game. Moreover, through numerical simulations, the authors demonstrate the superior performance of the proposed algorithm compared with several baseline schemes.

Inspec keywords: telecommunication computing; radio spectrum management; 5G mobile communication; distributed processing; cognitive radio; multi-access systems

Other keywords: cognitive radio NOMA-enabled multiaccess edge computing systems; mobile applications; MEC server; spectrum utilisation; fifth-generation and beyond networks; nonorthogonal multiple access; computation-hungry applications; secondary user; CR-NOMA

Subjects: Communications computing; Multiple access communication; Distributed systems software; Mobile radio systems

References

    1. 1)
      • 4. Gottapu, S.K., Kapileswar, N., Santhi, P.V., et al: ‘Maximizing cognitive radio networks throughput using limited historical behavior of primary users’, IEEE Access, 2018, 6, pp. 1225212259.
    2. 2)
      • 18. Wang, K., Zhou, Y., Liu, Z., et al: ‘Online task scheduling and resource allocation for intelligent NOMA-based industrial internet of things’, IEEE J. Sel. Areas Commun., 2020, 38, (5), pp. 803815.
    3. 3)
      • 13. Yang, Z., Pan, C., Hou, J., et al: ‘Efficient resource allocation for mobile-edge computing networks with NOMA: completion time and energy minimization’, IEEE Trans. Commun., 2019, 67, (11), pp. 77717784.
    4. 4)
      • 1. Lv, L., Chen, J., Ni, Q.: ‘Cooperative non-orthogonal multiple access in cognitive radio’, IEEE Commun. Lett., 2016, 20, (10), pp. 20592062.
    5. 5)
      • 20. Liu, B., Wang, J., Ma, S., et al: ‘Energy-efficient cooperation in mobile edge computing-enabled cognitive radio networks’, IEEE Access, 2019, 7, pp. 4538245394.
    6. 6)
      • 15. Ye, Y., Hu, R.Q., Lu, G., et al: ‘Enhance latency-constrained computation in MEC networks using uplink NOMA’, IEEE Trans. Commun., 2020, 68, (4), pp. 24092425.
    7. 7)
      • 16. Sheng, M., Dai, Y., Liu, J., et al: ‘Delay-aware computation offloading in NOMA MEC under differentiated uploading delay’, IEEE Trans. Wirel. Commun., 2020, 19, (4), pp. 28132826.
    8. 8)
      • 2. Lv, L., Chen, J., Ni, Q., et al: ‘Cognitive non-orthogonal multiple access with cooperative relaying: a new wireless frontier for 5G spectrum sharing’, IEEE Commun. Mag., 2018, 56, (4), pp. 188195.
    9. 9)
      • 19. Du, J., Yu, F.R., Chu, X., et al: ‘Computation offloading and resource allocation in vehicular networks based on dual-side cost minimization’, IEEE Trans. Veh. Technol., 2019, 68, (2), pp. 10791092.
    10. 10)
      • 24. Yang, Z., Ding, Z., Fan, P., et al: ‘A general power allocation scheme to guarantee quality of service in downlink and uplink NOMA systems’, IEEE Trans. Wirel. Commun., 2016, 15, (11), pp. 72447257.
    11. 11)
      • 25. Pham, Q.V., Le, L.B., Chung, S.H., et al: ‘Mobile edge computing with wireless backhaul: joint task offloading and resource allocation’, IEEE Access, 2019, 7, pp. 1644416459.
    12. 12)
      • 22. Ding, Z., Fan, P., Poor, H.V.: ‘Impact of non-orthogonal multiple access on the offloading of mobile edge computing’, IEEE Trans. Commun., 2019, 67, (1), pp. 375390.
    13. 13)
      • 17. Zhang, X., Zhang, J., Xiong, J., et al: ‘Energy-efficient multi-UAV-enabled multiaccess edge computing incorporating NOMA’, IEEE Internet of Things J., 2020, 7, (6), pp. 56135627.
    14. 14)
      • 28. Zhou, Z., Ota, K., Dong, M., et al: ‘Energy-efficient matching for resource allocation in D2D enabled cellular networks’, IEEE Trans. Veh. Technol., 2017, 66, (6), pp. 52565268.
    15. 15)
      • 3. Liu, Y., Qin, Z., Elkashlan, M., et al: ‘Nonorthogonal multiple access for 5G and beyond’, Proc. IEEE, 2017, 105, (12), pp. 23472381.
    16. 16)
      • 9. Arzykulov, S., Nauryzbayev, G., Tsiftsis, T.A., et al: ‘On the outage of underlay CR-NOMA networks with detect-and-forward relaying’, IEEE Trans. Cognitive Commun. Netw., 2019, 5, (3), pp. 795804.
    17. 17)
      • 23. Liu, Y., Ding, Z., Elkashlan, M., et al: ‘Nonorthogonal multiple access in large-scale underlay cognitive radio networks’, IEEE Trans. Veh. Technol., 2016, 65, (12), pp. 1015210157.
    18. 18)
      • 8. Arzykulov, S., Tsiftsis, T.A., Nauryzbayev, G., et al: ‘Outage performance of cooperative underlay CR-NOMA with imperfect CSI’, IEEE Commun. Lett., 2019, 23, (1), pp. 176179.
    19. 19)
      • 10. Pham, Q., Fang, F., Ha, V.N., et al: ‘A survey of multi-access edge computing in 5G and beyond: fundamentals, technology integration, and state-of-the-art’, IEEE Access, 2020, 8, pp. 116974117017.
    20. 20)
      • 6. Bagwari, A., Singh, B.: ‘Comparative performance evaluation of spectrum sensing techniques for cognitive radio networks’. 2012 Fourth Int. Conf. on Computational Intelligence and Communication Networks, Mathura, India, 2012, pp. 98105.
    21. 21)
      • 7. Zhou, F., Wu, Y., Liang, Y., et al: ‘State of the art, taxonomy, and open issues on cognitive radio networks with NOMA’, IEEE Wirel. Commun., 2018, 25, (2), pp. 100108.
    22. 22)
      • 5. Rasethuntsa, T.R., Kumar, S.: ‘An integrated performance evaluation of ED-based spectrum sensing over α-κ-μ and α-κ-μ-extreme fading channels’, Trans. Emerg. Telecommun. Technol., 2019, 30, (5), pp. 116.
    23. 23)
      • 14. Zeng, M., Nguyen, N., Dobre, O.A., et al: ‘Delay minimization for NOMA-assisted MEC under power and energy constraints’, IEEE Wirel. Commun. Lett., 2019, 8, (6), pp. 16571661.
    24. 24)
      • 21. Chen, A., Yang, Z., Lyu, B., et al: ‘System delay minimization for noma-based cognitive mobile edge computing’, IEEE Access, 2020, 8, pp. 6222862237.
    25. 25)
      • 11. Kiani, A., Ansari, N.: ‘Edge computing aware NOMA for 5G networks’, IEEE Internet Things J., 2018, 5, (2), pp. 12991306.
    26. 26)
      • 27. Ali, M.S., Tabassum, H., Hossain, E.: ‘Dynamic user clustering and power allocation for uplink and downlink non-orthogonal multiple access (NOMA) systems’, IEEE Access, 2016, 4, pp. 63256343.
    27. 27)
      • 26. Pham, Q.V., Anh, T.L., Tran, N.H., et al: ‘Decentralized computation offoading and resource allocation for mobile-edge computing: a matching game approach’, IEEE Access, 2018, 6, pp. 7586875885.
    28. 28)
      • 12. Pham, Q.V., Nguyen, H.T., Han, Z., et al: ‘Coalitional games for computation offloading in NOMA-enabled multi-access edge computing’, IEEE Trans. Veh. Technol., 2020, 69, (2), pp. 19821993.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-com.2020.0344
Loading

Related content

content/journals/10.1049/iet-com.2020.0344
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading