access icon free Supporting legacy and RF-energy harvesting devices in multi-cells OFDMA networks

A multi-cell network that uses orthogonal frequency division multiplexing access (OFDMA) is studied here. Unlike prior works, the proposed network consists of both (i) legacy data users that do not have energy harvesting capability and have a minimum data rate requirement and (ii) radio frequency (RF)-energy harvesting devices with a minimum energy requirement. It studies sub-band allocation to users and transmits power allocation at base stations. The authors formulate a mixed-integer non-linear program and also present two heuristics to assign sub-band to base stations. Numerical results show that RF energy harvesting devices will not affect network capacity if legacy data users require a high data rate. In addition, the results obtained from the two proposed heuristics are 95% of the optimal solution.

Inspec keywords: nonlinear programming; energy harvesting; OFDM modulation; telecommunication power management; integer programming; frequency division multiple access; cellular radio

Other keywords: RF energy harvesting devices; legacy data users; RF-energy harvesting devices; mixed-integer nonlinear program; base stations; minimum data rate requirement; network capacity; multicell network; orthogonal frequency division multiplexing access; minimum energy requirement; multicells OFDMA networks

Subjects: Multiple access communication; Telecommunication systems (energy utilisation); Mobile radio systems; Modulation and coding methods; Energy harvesting; Optimisation techniques; Energy harvesting

References

    1. 1)
      • 25. Holtkamp, H., Auer, G., Bazzi, S., et al: ‘Minimizing base station power consumption’, IEEE J. Sel. Areas Commun., 2013, 32, (2), pp. 297306.
    2. 2)
      • 14. Fu, W., Tao, Z., Zhang, J., et al: ‘Clustering based fractional frequency reuse and fair resource allocation in multi-cell networks’. IEEE The Int. Conf. on Communications (ICC), Capetown, South Africa, 2010, pp. 15.
    3. 3)
      • 5. Ghazanfari, A., Tabassum, H., Hossain, E.: ‘Ambient RF energy harvesting in ultra-dense small cell networks: performance and trade-offs’, IEEE Wirel. Commun., 2016, 23, (2), pp. 3845.
    4. 4)
      • 19. Zhou, X., Zhang, R., Ho, C.K.: ‘Wireless information and power transfer in multiuser OFDM systems’, IEEE Trans Wirel. Commun., 2014, 13, (4), pp. 22822294.
    5. 5)
      • 17. Selim, M.M., Muta, O., Shalaby, H., et al: ‘Fairness aware chunk-based resource allocation in multi-cell OFDMA networks’. Int. Conf. on Connected Vehicles & Expo, Vienna, Austria, 2014, pp. 994999.
    6. 6)
      • 26. Başaran, S.T., Kurt, G.K.: ‘Joint subcarrier and power allocation in OFDMA systems for outage minimization’, IEEE Commun. Lett., 2016, 20, (10), pp. 20072010.
    7. 7)
      • 24. Jabbar, H., Song, Y.S., Jeong, T.T.: ‘RF energy harvesting system and circuits for charging of mobile devices’, IEEE Trans. Consum. Electron., 2010, 56, (1), 247253.
    8. 8)
      • 6. Ponnimbaduge Perera, T.D., Jayakody, D.N.K., Sharma, S.K., et al: ‘Simultaneous wireless information and power transfer (SWIPT): recent advances and future challenges’, IEEE Commun. Surv. Tutor., 2018, 20, (1), pp. 264302.
    9. 9)
      • 3. Lu, X., Wang, P., Niyato, D., et al: ‘Wireless charging technologies: fundamentals, standards, and network applications’, IEEE Commun. Surv. Tutor., 2016, 18, (2), pp. 14131452.
    10. 10)
      • 22. Liang, J., Feng, D., He, C., et al: ‘Joint time and power allocation in multi-cell wireless powered communication networks’, IEEE Access, 2017, 7, pp. 4355543563.
    11. 11)
      • 4. Sarwar, M.Z., Chin, K.W.: ‘On supporting legacy and RF energy harvesting devices in two-tier OFDMA heterogeneous networks’, IEEE Access, 2018, 6, pp. 6253862551.
    12. 12)
      • 15. Liu, L., Zhu, G., Wu, D.: ‘Interference management based on enhanced fractional frequency reuse in OFDMA networks’. IEEE Wireless Communications and Networking Conf. (WCNC), Quintana-Roo, Maxico, 2011, pp. 14.
    13. 13)
      • 1. Kamel, M., Hamouda, W., Youssef, A.: ‘Ultra-dense networks: a survey’, IEEE Commun. Surv. Tutor., 2016, 18, (4), pp. 25222545.
    14. 14)
      • 29. Beard, C., Stallings, W., Tahiliani, M.P.: ‘Wireless communication networks and systems’ (Pearson Education Limited, London, UK, 2016).
    15. 15)
      • 21. Lohani, S., Hossain, E., Bhargava, V.K.: ‘On downlink resource allocation for SWIPT in small cells in a two-tier hetnet’, IEEE Trans. Wirel. Commun., 2016, 15, (11), pp. 77097724.
    16. 16)
      • 16. Nie, C., Liu, P., Panwar, S.: ‘Interference management using frequency planning in an OFDMA based wireless network’. IEEE 7th Wireless Communications and Networking Conf. (WCNC), Quintana-Roo, Maxico, 2011, pp. 9981003.
    17. 17)
      • 11. Özcan, Y., Rosenberg, C.: ‘Revisiting downlink scheduling in a multi-cell ofdma network: from full base station coordination to practical schemes’. IEEE 11th Wireless Days (WD) Conf., Manchester, United Kingdom, 2019, pp. 18.
    18. 18)
      • 8. Yi, S., Wang, G., Xia, Y.: ‘Qos-enabled dynamic resource management in multi-cell OFDMA-based systems’. IEEE 73rd Vehicular Technology Conf. (VTC), Budapest, Hungary, 2011, pp. 15.
    19. 19)
      • 20. Rezvani, S., Mokari, N., Javan, M.R.: ‘Joint uplink/downlink resource allocation and data offloading in OFDMA-based wireless powered hetnets’, arXiv preprint arXiv:170507940, 2017.
    20. 20)
      • 2. Ge, X., Tu, S., Mao, G., et al: ‘5G ultra-dense cellular networks’, IEEE Wirel. Commun., 2016, 23, (1), pp. 7279.
    21. 21)
      • 13. Xiao, H., Feng, Z.: ‘A novel fractional frequency reuse architecture and interference coordination scheme for multi-cell OFDMA networks’. IEEE 71st Vehicular Technology Conf. (VTC)-SPRING, Taipei, Taiwan, 2010, pp. 15.
    22. 22)
      • 27. Yang, Z., Pan, C., Xu, H., et al: ‘Power control and resource allocation for multi-cell OFDM networks with load coupling’, IEEE Access, 2018, 6, pp. 1596915979.
    23. 23)
      • 10. Yassin, M., Lahoud, S., Ibrahim, M., et al: ‘Centralized multi-cell resource and power allocation for multiuser OFDMA networks’. IEEE IFIP Networking, Vienna, Austria, 2016, pp. 162170.
    24. 24)
      • 30. ‘Powercasto’. Available at http://www.powercastco.com/.
    25. 25)
      • 7. López-Pérez, D., Ding, M., Claussen, H., et al: ‘Towards 1 Gbps/UE in cellular systems: understanding ultra-dense small cell deployments’, IEEE Commun. Surv. Tutor., 2015, 17, (4), pp. 20782101.
    26. 26)
      • 18. Lu, X., Wang, P., Niyato, D., et al: ‘Wireless networks with RF energy harvesting a contemporary survey’, IEEE Commun. Surv. Tutor., 2015, 17, (2), pp. 757789.
    27. 27)
      • 12. Hamza, A.S., Khalifa, S.S., Hamza, H.S., et al: ‘A survey on inter-cell interference coordination techniques in OFDMA-based cellular networks’, IEEE Commun. Surv. Tutor., 2013, 15, (4), pp. 16421670.
    28. 28)
      • 28. Williams, H.P.: ‘Model building in mathematical programming’ (Wiley, London, UK, 2013).
    29. 29)
      • 23. Nasir, A.A., Ngo, D.T., Zhou, X., et al: ‘Sum throughput maximization for heterogeneous multicell networks with RF-powered relays’. IEEE The Int. Conf. on Communications (ICC), London, UK, 2015.
    30. 30)
      • 9. Kim, S.Y., Kwon, J.A., Lee, J.W.: ‘Resource allocation for the multi-cell OFDMA system and its capacity bounds’. 11th IEEE Int. Symp. on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt), Tsukuba Science City, Japan, 2013, pp. 326332.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-com.2020.0303
Loading

Related content

content/journals/10.1049/iet-com.2020.0303
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading