access icon free Secure beamforming method for artificial-noise-aided multiuser broadcast system with users of different importance under secrecy outage probability constraint

In this study, the authors proposed the optimal beamforming (BF) design for multiuser broadcast secure transmission under secrecy outage probability constraint with artificial noise technique. Different from former research papers, their model assumes that different users have different priority and importance. Some users are regarded as main users with a stricter constraint, which make the normal BF algorithm not to gain the best performance. For this reason, they proposed a new BF design method for this specific system model. To deal with intractable non-convex problems, they employed a series of optimisation algorithm like Bernstein-type inequality and second-order cone constraints method to transform these problems into solvable functions. After that, they show the feasibility of their new BF algorithm by Monte-Carlo simulation method, and analyse the influence on transmission and security performance caused by different system parameters. Furthermore, they compare the security performance of their method with the normal BF method, which demonstrates the advantage of the new BF method.

Inspec keywords: concave programming; Monte Carlo methods; telecommunication security; array signal processing; convex programming; probability; multi-access systems; broadcast communication

Other keywords: specific system model; security performance; secrecy outage probability constraint; normal BF method; optimal beamforming design; secure beamforming method; optimisation algorithm; artificial noise technique; Monte-Carlo simulation method; normal BF algorithm; nonconvex problems; second-order cone constraints method; multiuser broadcast secure transmission; artificial-noise-aided multiuser broadcast system; stricter constraint; BF design method

Subjects: Monte Carlo methods; Multiple access communication; Radio links and equipment; Signal processing and detection; Optimisation techniques

References

    1. 1)
      • 23. Björnson, E., Bengtsson, M., Ottersten, B.: ‘Optimal multiuser transmit beamforming: a difficult problem with a simple solution structure’, IEEE Signal Proc. Mag., 2014, 31, (4), pp. 142148.
    2. 2)
      • 11. Yang, N., Yeoh, P.L., Elkashlan, M., et al: ‘Transmit antenna selection for security enhancement in MIMO wiretap channels’, IEEE Trans. Commun., 2013, 61, (1), pp. 144154.
    3. 3)
      • 28. Zhang, C., Jia, X.: ‘Joint beamforming optimisation for NOMA-based wireless powered multi-pair two-way AF and DF relaying networks’, IET Commun., 2018, 13, (4), pp. 387395.
    4. 4)
      • 34. Bechar, I.: ‘A Bernstein-type inequality for stochastic processes of quadratic forms of Gaussian variables’, http://arxiv.org/abs/0909.3595/, September 2009.
    5. 5)
      • 20. Wang, B., Mu, P: ‘Artificial noise-aided secure multicasting design under secrecy outage constraint’, IEEE Trans. Commun., 2017, 65, (12), pp. 54015414.
    6. 6)
      • 29. Aswathi, V., Babu, A.V.: ‘Ensuring equal outage performance for down-link secondary users in full/half duplex cognitive NOMA systems’, IET Commun., 2018, 14, (1), pp. 6375.
    7. 7)
      • 22. Joham, M., Utschick, W., Nossek, J.A.: ‘Linear transmit processing in MIMO communications systems’, IEEE Trans. Signal Process., 2005, 53, (8), pp. 27002712.
    8. 8)
      • 10. Alves, H., Souza, R.D., Debbah, M., et al: ‘Performance of transmit antenna selection physical layer security schemes’, IEEE Signal Process. Lett., 2012, 19, (6), pp. 372375.
    9. 9)
      • 27. Khan, W.U., Yu, Z., Yu, S., et al: ‘Efficient power allocation in downlink multi-cell multi-user NOMA networks’, IET Commun., 2018, 13, (4), pp. 396402.
    10. 10)
      • 4. Leung-Yan-Cheong, S.K., Hellman, M. E.: ‘The Gaussian wiretap channel’, IEEE Trans. Inf. Theory, 1978, 24, (4), pp. 451456.
    11. 11)
      • 26. Liu, M., Song, T., Hu, J., et al: ‘Deep learning-inspired message passing algorithm for efficient resource allocation in cognitive radio networks’, IEEE Trans. Veh. Technol., 2018, 68, (1), pp. 641653.
    12. 12)
      • 30. Mei, W., Chen, Z., Huang, C.: ‘Robust artificial-noise aided transmit design for multi-user MISO systems with integrated services’. IEEE 2016 IEEE Int. Conf. on Acoustics, Speech and Signal Processing, Shanghai China, March 2016, pp. 38563860.
    13. 13)
      • 21. Lv, L., Ding, Z., Ni, Q., et al: ‘Secure MISO-NOMA transmission with artificial noise’, IEEE Trans. Veh. Technol., 2018, 67, (7), pp. 67006705.
    14. 14)
      • 33. Chu, Z., Cumanan, K., Ding, Z., et al: ‘Secrecy rate optimizations for a MIMO secrecy channel with a cooperative jammer’, IEEE Trans. Veh. Technol., 2015, 64, (5), pp. 18331847.
    15. 15)
      • 15. Yang, N., Elkashlan, M., Duong, T.Q., et al: ‘Optimal transmission with artificial noise in MISOME wiretap channels’, IEEE Trans. Veh. Technol., 2016, 65, (4), pp. 21702181.
    16. 16)
      • 14. Zhang, X., Zhou, X., McKay, M.R.: ‘On the design of artificial-noise aided secure multi-antenna transmission in slow fading channels’, IEEE Trans. Veh. Technol., 2013, 62, (5), pp. 21702181.
    17. 17)
      • 32. Chen, H., Tao, X., Li, N., et al: ‘Secrecy performance of the artificial noise assisted broadcast channel with confidential messages and external eavesdroppers’. Proc. IEEE Int. Conf. on Communications Workshops (ICC), Kuala Lumpur Malaysia, May 2016, pp. 16.
    18. 18)
      • 19. Wang, B., Mu, P.: ‘Dirty-paper coding based secure transmission for multiuser downlink in cellular communication systems’, IEEE Trans. Veh. Technol., 2016, 66, (7), pp. 59475960.
    19. 19)
      • 9. Li, W., Tang, Y., Ghogho, M., et al: ‘Secure communications via sending artificial noise by both transmitter and receiver: optimum power allocation to minimise the insecure region’, IET Commun., 2014, 8, (16), pp. 28582862.
    20. 20)
      • 38. Zhang, C., Xu, W., Chen, M.: ‘Robust MMSE beamforming for multiuser MISO systems with limited feedback’, IEEE Signal Proc. Lett., 2009, 16, (7), pp. 588591.
    21. 21)
      • 13. Zhou, X., McKay, M.R.: ‘Physical layer security with artificial noise: secrecy capacity and optimal power allocation’. Proc. IEEE 2009 3rd Int. Conf. on Signal Processing and Communication Systems, Omaha NE USA, September 2009, pp. 15.
    22. 22)
      • 25. Maji, P., Dhar, R.S., Kundu, S.: ‘Physical layer security in cognitive radio network with energy harvesting relay and jamming in the presence of direct link’, IET Commun., 2018, 12, (11), pp. 13891395.
    23. 23)
      • 31. Yoo, T., Goldsmith, A.: ‘On the optimality of multiantenna broadcast scheduling using zero-forcing beamforming’, IEEE J. Sel. Area. Commun., 2006, 24, (3), pp. 528541.
    24. 24)
      • 6. Liu, R., Liu, T., Poor, H.V., et al: ‘MIMO Gaussian broadcast channels with confidential and common messages’. Proc. IEEE Int. Symp. on Information Theory, Austin TX USA, June 2010, pp. 25782582.
    25. 25)
      • 1. Shannon, C.E.: ‘Communication theory of secrecy systems’, Bell syst. Tech. J., 1949, 28, (4), pp. 656715.
    26. 26)
      • 12. Goel, S., Negi, R.: ‘Guaranteeing secrecy using artificial noise’, IEEE Trans. Wireless Commun., 2008, 7, (6), pp. 21802189.
    27. 27)
      • 17. Hu, D., Mu, P., Zhang, W., et al: ‘Minimization of secrecy outage probability with artificial-noise-aided beamforming for MISO wiretap channels’, IEEE Commun. Lett., 2020, 24, (2), pp. 401404.
    28. 28)
      • 24. Xu, H., Zhu, B., Liu, J., et al: ‘Robust beamforming design for secure multiuser MISO interference channel’, IEEE Commun. Lett., 2017, 21, (4), pp. 833836.
    29. 29)
      • 3. Csiszar, I., Korner, J.: ‘Broadcast channels with confidential messages’, IEEE Trans. Inf. Theory, 1978, 24, (3), pp. 339348.
    30. 30)
      • 16. Zhang, Y., Yang, Z., Liu, A., et al: ‘Secure transmission over the wiretap channel using polar codes and artificial noise’, IET Commun., 2017, 11, (3), pp. 377384.
    31. 31)
      • 37. Wiesel, A., Eldar, Y.C., Shamai, S.: ‘Zero-forcing precoding and generalized inverses’, IEEE Trans. Signal Process., 2008, 56, (9), pp. 44094418.
    32. 32)
      • 18. Yun, S., Kang, J. M., Kim, I. M., et al: ‘Deep artificial noise: deep learning-based precoding optimization for artificial noise scheme’, IEEE Trans. Veh. Technol., 2020, 69, (3), pp. 34653469.
    33. 33)
      • 7. Rezki, Z., Alouini, M.-S.: ‘On the finite-SNR diversity-multiplexing tradeoff of zero-forcing transmit scheme under secrecy constraint’. Proc. IEEE Int. Conf. on Communications Workshops (ICC), Kyoto, Japan, June 2011, pp. 15.
    34. 34)
      • 8. Chen, J., Zhang, R., Song, L., et al: ‘Joint relay and jammer selection for secure two-way relay networks’, IEEE Trans. Inf. Forensics Secur., 2012, 7, (1), pp. 310320.
    35. 35)
      • 5. Khisti, A., Wornell, G., Wiesel, A., et al: ‘On the Gaussian MIMO wiretap channel’. Proc. IEEE Int. Symp. on Information Theory, Nice, France, June 2007, pp. 24712475.
    36. 36)
      • 2. Wyner, A.D.: ‘The wire-tap channel’, Bell Syst. Tech. J., 1975, 54, (8), pp. 13551387.
    37. 37)
      • 35. Wiesel, A., Eldar, Y.C., Shamai, S.: ‘Linear precoding via conic optimization for fixed MIMO receivers’, IEEE Trans. Signal Process., 2006, 54, (1), pp. 161176.
    38. 38)
      • 36. CVX Research, Inc.: ‘CVX: Matlab software for disciplined convex programming, version 2.0’, http://cvxr.com/cvx/, August 2012.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-com.2020.0277
Loading

Related content

content/journals/10.1049/iet-com.2020.0277
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading