access icon free Joint coding bit-rate and activity rate optimisation in wireless visual sensor networks

Optimising the coding bit-rates and activity rates of sensor nodes is essential for the functionality and survival of wireless sensor networks as these rates not only affect the amount of information collected by the network, but also affect its power consumption. This study proposes a framework for joint coding bit-rates and activity rates optimisation (CARO) of sensor nodes in wireless visual sensor networks under limited energy constraints. The framework uses the concept of accumulative visual information (AVI) as a measure of the amount of visual information collected from a sensor node. The authors propose two optimisation algorithms for the following two cases: (I) networks with predetermined operation time, where algorithm CARO I maximises the AVI of the network over its predetermined operation time. (II) Best effort networks, where algorithm CARO II maximises the network operation time under constraints on the collected visual information. Simulations show that optimising the rates using CARO maximises the AVI of the network and extends its operation time compared to the straightforward solution when all nodes have equal activity rates. This is because the authors' framework takes into consideration that different nodes in different locations may operate under different conditions and collect information of different significance.

Inspec keywords: image sensors; codes; optimisation; wireless sensor networks

Other keywords: visual information; optimisation algorithms; equal activity rates; joint coding bit-rate; wireless visual sensor networks; activity rates optimisation; algorithm CARO II; coding bit-rates; predetermined operation time; AVI; wireless sensor networks; accumulative visual information; sensor node; activity rate optimisation

Subjects: Image sensors; Codes; Wireless sensor networks; Optimisation techniques

References

    1. 1)
      • 16. Zou, J., Xiong, H., Li, C., et al: ‘Lifetime and distortion optimization with joint source/channel rate adaptation and network coding-based error control in wireless video sensor networks’, IEEE Trans. Veh. Technol., 2011, 60, (3), pp. 11821194.
    2. 2)
      • 18. He, Z., Liang, Y., Chen, L., et al: ‘Power-rate-distortion analysis for wireless video communication under energy constraints’, IEEE Trans. Circuits. Syst. Video Technol., 2005, 15, (5), pp. 645658.
    3. 3)
      • 19. Ferrigno, L., Marano, S., Paciello, V., et al: ‘Balancing computational and transmission power consumption in wireless image sensor networks’. Proc. Symp. on Virtual Environments, Human-Computer Interfaces and Measurement Systems, Messina, Italy, July 2005, pp. 6166.
    4. 4)
      • 15. He, Y., Lee, I., Guan, L.: ‘Distributed algorithms for network lifetime maximization in wireless visual sensor networks’, IEEE Trans. Circuits Syst. Video Technol., 2009, 19, (5), pp. 704718.
    5. 5)
      • 8. Curry, R.M., Smith, J.C.: ‘A survey of optimization algorithms for wireless sensor network lifetime maximization’, Comput. Ind. Eng., 2016, 101, pp. 145166.
    6. 6)
      • 14. Yang, M., Chen, L., Xiong, W.: ‘Compression/transmission power allocation in multimedia wireless sensor networks’. Proc. Intl. Conf. Computing, Networking, and Communications, Hawaii, USA, February 2014, pp. 11031107.
    7. 7)
      • 12. Wang, N., Zhou, Y., Xiang, W.: ‘An energy efficient clustering protocol for lifetime maximization in wireless sensor networks’. Proc. Global Communications Conf., Washington DC, USA, December 2016, pp. 16.
    8. 8)
      • 1. Rawat, P., Singh, K.D., Chaouchi, H., et al: ‘Wireless sensor networks: a survey on recent developments and potential synergies’, J. Supercomput., 2014, 68, (1), pp. 148.
    9. 9)
      • 5. Yetgin, H., Cheung, K.T.K., El-Hajjar, M., et al: ‘A survey of network lifetime maximization techniques in wireless sensor networks’, IEEE Commun. Surv. Tutor., 2017, 19, (2), pp. 828854.
    10. 10)
      • 6. Peng, W., Li, C., Zhang, G., et al: ‘Interval type-2 fuzzy logic based transmission power allocation strategy for lifetime maximization of WSNs’, Eng. Appl. Artif. Intel., 2020, 87, pp. 111.
    11. 11)
      • 10. Abdelhafidh, M., Fourati, M., Fourati, L.C., et al: ‘Linear WSN lifetime maximization for pipeline monitoring using hybrid k-means ACO clustering algorithm’. Proc. Wireless Days, Dubai, UAE, April 2018, pp. 178180.
    12. 12)
      • 20. Palomar, D.P., Chiang, M.: ‘A tutorial on decomposition methods for network utility maximization’, IEEE J. Sel. Areas Commun., 2006, 24, (8), pp. 14391451.
    13. 13)
      • 13. Du, P., Yang, Q., Shen, Z., et al: ‘Quality of information maximization in lifetime-constrained wireless sensor networks’, IEEE Sens. J., 2016, 16, (19), pp. 72787286.
    14. 14)
      • 4. Bano, N., Alam, M., Ahmad, S.: ‘Energy efficient image compression techniques in WSN’, in Singh, R., et al (Ed.): ‘Intelligent communication, control and devices’ (Springer, Singapore, 2018, 1st edn.), pp. 10791088.
    15. 15)
      • 9. Hasan, M.Z., Al-Rizzo, H., Günay, M.: ‘Lifetime maximization by partitioning approach in wireless sensor networks’, EURASIP J. Wirel. Comm., 2017, 15, pp. 118.
    16. 16)
      • 11. Arjunan, S., Sujatha, P.: ‘Lifetime maximization of wireless sensor network using fuzzy based unequal clustering and ACO based routing hybrid protocol’, Appl. Intell., 2018, 48, (8), pp. 22292246.
    17. 17)
      • 7. Akbas, A., Yildiz, H.U., Tavli, B., et al: ‘Joint optimization of transmission power level and packet size for WSN lifetime maximization’, IEEE Sens. J., 2016, 16, (12), pp. 50845094.
    18. 18)
      • 2. Rashid, B., Rehmani, M.H.: ‘Applications of wireless sensor networks for urban areas: a survey’, J. Netw. Comput. Appl., 2016, 60, pp. 192219.
    19. 19)
      • 3. Matin, M.A., Islam, M.M.: ‘Overview of wireless sensor network’, in Matin, M.A. (Ed.): ‘Wireless sensor networks-technology and protocols’ (InTech, Rijeka, 2012, 1st edn.), pp. 13.
    20. 20)
      • 17. He, Z., Wu, D.: ‘Accumulative visual information in wireless video sensor network: definition and analysis’. Proc. Int. Conf. Communications, Seoul, south Korea, May 2005, pp. 12051208.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-com.2020.0244
Loading

Related content

content/journals/10.1049/iet-com.2020.0244
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading