access icon free Friendly co-existence of phosphorescent white and infrared LEDs in optical wireless communications

In this study, the authors demonstrate that transmission rate in white phosphorescent light emitting diode (LED) transmitter communication-illumination system can be increased significantly by simultaneous transmission of an additional infrared (IR) channel. Unlike in typical colour multiplexing, the IR channel does not require a dedicated receiver filter as the channel crosstalk can be removed using digital signal processing. Both channels can operate in synchronous or asynchronous mode. The experimental results in this study demonstrate a significant increase in the data rate.

Inspec keywords: optical filters; optical crosstalk; light emitting diodes; free-space optical communication; optical receivers; signal denoising; phosphorescence; multiplexing; optical transmitters

Other keywords: friendly coexistence; IR channel; optical wireless communications; receiver filter; white phosphorescent LED transmitter communication-illumination system; channel crosstalk; white phosphorescent light emitting diode; transmission rate; infrared channel; digital signal processing; phosphorescent white LED; colour multiplexing; infrared LED

Subjects: Optical coatings and filters; Free-space optical links; Light emitting diodes; Optical communication equipment; Multiplexing and switching in optical communication

References

    1. 1)
      • 15. Hong, Y., Chen, L.K., Zhao, J.: ‘Performance-enhanced gigabit/s MIMO-OFDM visible light communications using CSI-free/dependent precoding techniques’, Opt. Exp., 2019, 27, (9), pp. 1280612816.
    2. 2)
      • 9. Alresheedi, M.T., Hussein, A.T., Elmirghani, J.M.H.: ‘Uplink design in VLC systems with IR sources and beam steering’, IET Commun., 2017, 11, pp. 311317.
    3. 3)
      • 17. Burton, A., Haigh, P.A., Chvojka, P., et al: ‘Filter-less WDM for visible light communications using coloured PAM’, Opt. Lett., 2019, 44, (19), pp. 48494852.
    4. 4)
      • 5. Rajbhandari, S., McKendry, J.J., Herrnsdorf, J., et al: ‘A review of gallium nitride LEDs for multi-gigabitper-second visible light data communications’, Semicond. Sci. Technol., 2017, 32, pp. 140.
    5. 5)
      • 14. Fath, T., Haas, H.: ‘Performance comparison of MIMO techniques for optical wireless communications in indoor environments’, IEEE Trans. Commun., 2013, 61, (2), pp. 733742.
    6. 6)
      • 12. Mills, A., ‘Phosphors development for LED lighting’, Adv. Semicond. Mag., 2005, 18, (23), pp. 3241.
    7. 7)
      • 20. Bingham, J.A.C.: ‘Multicarrier modulation for data transmission: an idea whose time has come’, IEEE Commun. Mag., 1999, 28, (5), pp. 514.
    8. 8)
      • 4. Tsonev, D., Videv, S., Haas, H.: ‘Light fidelity (Li-Fi): towards all-optical networking’. Proc. SPIE 9007, Broadband Access Communication Technologies VIII, 900702, San Francisco, USA, 2014, 9007.
    9. 9)
      • 1. Pathak, P.H., Feng, X., Hu, P., et al: ‘Visible light communication, networking, and sensing: A survey, potential and challenges|’, IEEE Commun. Surv. Tutor., 2015, 17, (4), pp. 20472077.
    10. 10)
      • 11. Bian, R., Tavakkolnia, I., Haas, H.: ‘15.73 Gb/s visible light communication with off the-shelf LEDs’, J. Lightwave Technol., 2019, 37, (10), pp. 24182424.
    11. 11)
      • 7. Kowalczyk, M., Siuzdak, J.: ‘Photo-reception properties of common LEDs’, Opto-Electron. Rev., 2017, 25, p. 222-.
    12. 12)
      • 16. Lin, B., Ghassemlooy, Z., Tang, X., et al: ‘Experimental demonstration of optical MIMO NOMA-VLC with single carrier transmission’, Opt. Commun., 2017, 402, pp. 5255.
    13. 13)
      • 6. Huang, X., Chen, S., Wang, Z., et al: ‘2.0-Gb/s visible light link based on adaptive bit allocation OFDM of a single phosphorescent white LED’, IEEE Photon. J., 2015, 7, (5), pp. 18.
    14. 14)
      • 3. Zhang, R., Wang, J., Wang, Z., et al: ‘Visible light communications in heterogeneous networks: paving the way for user-centric design’, IEEE Wirel. Commun., 2016, 22, pp. 816.
    15. 15)
      • 18. Gomez, A., Chun, H., Rajbhandari, S., et al: ‘100 Mb/s wavelength division multiplexing visible light communications link using a triple-junction photo-diode’. 2016 IEEE Photonics Society Summer Topical Meeting Series (SUM), Newport Beach, CA, 2016, pp. 2930.
    16. 16)
      • 19. Proakis, J.G., Manolakis, D.G.: ‘Digital signal processing, principles, algorithms and applications’ (Prentice-Hall, USA, 1996, 3rd Edn.).
    17. 17)
      • 2. Haas, H.: ‘Visible light communication’. Opt. Fiber Comm. Conf., Los Angeles, CA, USA, 2015, Tu2G.5.
    18. 18)
      • 13. Cabrera, R.: ‘Electronic devices and circuits’, ED-Tech Press Learn., 2019, pp. 8990, http://www.edtechpress.co.uk/details/electronic-devices-and-circuits.
    19. 19)
      • 8. Stepniak, G., Schueppert, M., Bunge, C.A., et al: ‘Advanced modulation formats in phosphorous LED VLC links and the impact of blue filtering’, J. Lightwave Technol., 2015, 33, (21), pp. 44134423.
    20. 20)
      • 10. Huang, X., Wang, Z., Shi, J., et al: ‘1.6 Gbit/s phosphorescent white LED based VLC transmission using a cascaded pre-equalization circuit and a differential outputs PIN receiver’, Opt. Exp., 2015, 23, (17), pp. 2203422042.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-com.2020.0193
Loading

Related content

content/journals/10.1049/iet-com.2020.0193
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading