Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Wireless information and power transfer for underwater acoustic time-reversed NOMA

The acoustic signal transmission over the underwater channel has a limited sum rate and it consumes high power due to the properties of the underwater environment. This study attempts to use the non-orthogonal multiple access (NOMA) technologies for underwater communications. NOMA can be an attractive candidate for underwater communication due to its high spectral efficiency, resistance for carrier frequency offset, and efficient energy consumption. To cope with the hard-recharging capability of the underwater wireless sensor nodes caused by the ocean environment, this study proposes a novel transmission scheme called time-reversed NOMA (TR-NOMA) for underwater communication. In the proposed TR-NOMA, a single-input multiple-output NOMA scheme with a passive-time reversal technique is proposed to reduce the time–frequency dispersion of the underwater acoustic channels. Consequently, simultaneous wireless information and power transfer (SWIPT) can be applied for underwater TR-NOMA. In this study, a SWIPT-NOMA is postposed to harvest energy in downlink transmission from the transmitted signal. The bit error rate (BER) and the outage probability are used to characterise the performance of the proposed TR-NOMA scheme and simulation results show how the proposed TR-NOMA significantly outperforms the conventional NOMA schemes. Additionally, a mathematical framework for the average BER of TR-NOMA is delineated.

References

    1. 1)
      • 49. Esmaiel, H., Jiang, D.: ‘Spectrum and energy efficient OFDM multicarrier modulation for an underwater acoustic channel’, Wirel. Pers. Commun., 2017, 96, (1), pp. 15771593.
    2. 2)
      • 29. Salehi, M., Tabassum, H., Hossain, E.: ‘Meta distribution of SIR in large-scale uplink and downlink NOMA networks’, IEEE Trans. Commun., 2019, 67, (4), pp. 30093025.
    3. 3)
      • 53. Zhao, R., Long, H., Dobre, O.A., et al: ‘Time reversal based MAC for multi-hop underwater acoustic networks’, IEEE Syst. J., 2019, 13, (3), pp. 25312542.
    4. 4)
      • 23. Rezaei, H.F., Kruger, A., Just, C.: ‘An energy harvesting scheme for underwater sensor applications’. IEEE Int. Conf. on Electro/Information Technology, Indianapolis, USA, 2012, pp. 14.
    5. 5)
      • 10. Grover, P., Sahai, A.: ‘Shannon meets tesla: wireless information and power transfer’. IEEE Int. Symp. on Information Theory, Austin, 2010, pp. 23632367.
    6. 6)
      • 54. Hwangbo, S., Jeon, J.-H., Park, S.-J.: ‘Self-powered wireless ocean monitoring systems’. The Sixth Int. Conf. on Sensor Technologies and Applications, Rome, Italy, 2012, pp. 334337.
    7. 7)
      • 50. Yang, T.: ‘Temporal resolutions of time-reversal and passive-phase conjugation for underwater acoustic communications’, IEEE J. Ocean. Eng., 2003, 28, (2), pp. 229245.
    8. 8)
      • 15. Fouladgar, A.M., Simeone, O.: ‘On the transfer of information and energy in multi-user systems’, IEEE Commun. Lett., 2012, 16, (11), pp. 17331736.
    9. 9)
      • 26. Ashraf, M., Shahid, A., Jang, J.W., et al: ‘Energy harvesting non-orthogonal multiple access system with multi-antenna relay and base station’, IEEE Access, 2017, 5, pp. 1766017670.
    10. 10)
      • 17. Lee, S., Zhang, R., Huang, K.: ‘Opportunistic wireless energy harvesting in cognitive radio networks’, IEEE Trans. Wirel. Commun., 2013, 12, (9), pp. 47884799.
    11. 11)
      • 56. Akkermans, J.A.G., Beurden, M.C.V., Doodeman, G.J.N., et al: ‘Analytical models for low-power rectenna design’, IEEE Antennas Wirel. Propag. Lett., 2005, 4, pp. 187190.
    12. 12)
      • 8. Cao, R., Qu, F., Yang, L.: ‘Asynchronous amplify-and-forward relay communications for underwater acoustic networks’, IET Commun., 2016, 10, (6), pp. 677684.
    13. 13)
      • 7. Zhang, R., Cheng, X., Cheng, X., et al: ‘Interference-free graph based TDMA protocol for underwater acoustic sensor networks’, IEEE Trans. Veh. Technol., 2017, 67, (5), pp. 40084019.
    14. 14)
      • 25. Mostafa, M., Esmaiel, H., Mohamed, E.M.: ‘A comparative study on underwater communications for enabling C/U plane splitting based hybrid UWSNs’. IEEE WCNC, Barcelona, Spain, 2018, pp. 16.
    15. 15)
      • 55. Paing, T., Shin, J., Zane, R., et al: ‘Resistor emulation approach to low-power RF energy harvesting’, IEEE Trans. Power Electron., 2008, 23, (3), pp. 14941501.
    16. 16)
      • 58. Qarabaqi, P., Stojanovic, M.: ‘Statistical characterization and computationally efficient modeling of a class of underwater acoustic communication channels’, IEEE J. Ocean. Eng., 2013, 38, (4), pp. 701717.
    17. 17)
    18. 18)
      • 40. Bayrakdar, M.E., Atmaca, S., Karahan, A.: ‘A slotted ALOHA-based cognitive radio network under capture effect in Rayleigh fading channels’, Turkish J. Electr. Eng. Comput. Sci., 2016, 24, (3), pp. 19551966.
    19. 19)
      • 6. Junejo, N.U.R., Esmaiel, H., Zhou, M., et al: ‘Sparse channel estimation of underwater TDS-OFDM system using look-ahead backtracking orthogonal matching pursuit’, IEEE Access, 2018, 6, pp. 7438974399.
    20. 20)
      • 36. Men, J., Ge, J.: ‘Non-orthogonal multiple access for multiple-antenna relaying networks’, IEEE Commun. Lett., 2015, 19, (10), pp. 16861689.
    21. 21)
      • 19. Fazel, F., Fazel, M., Stojanovic, M.: ‘Compressed sensing in random access networks with applications to underwater monitoring’, Phys. Commun., 2012, 5, (2), pp. 148160.
    22. 22)
      • 30. Sun, Y., Ding, Z., Dai, X., et al: ‘On the performance of network NOMA in uplink CoMP systems: a stochastic geometry approach’, IEEE Trans. Commun., 2019, 67, (7), pp. 50845098.
    23. 23)
      • 5. Yuan, Y., Xu, Y., Yang, Z., et al: ‘Energy efficiency optimization in full-duplex user-aided cooperative SWIPT NOMA systems’, IEEE Trans. Commun., 2019, 67, (8), pp. 57535767.
    24. 24)
      • 34. Kara, F., Kaya, H.: ‘On the error performance of cooperative-NOMA with statistical CSIT’, IEEE Commun. Lett., 2019, 23, (1), pp. 128131.
    25. 25)
      • 13. Xiang, Z., Tao, M.: ‘Robust beamforming for wireless information and power transmission’, IEEE Wirel. Commun. Lett., 2012, 1, (4), pp. 372375.
    26. 26)
      • 18. Fazel, F., Fazel, M., Stojanovic, M.: ‘Random access compressed sensing for energy-efficient underwater sensor networks’, IEEE J. Sel. Areas Commun., 2011, 29, (8), pp. 16601670.
    27. 27)
      • 35. Liau, Q.Y., Leow, C.Y.: ‘Successive user relaying in cooperative NOMA system’, IEEE Wirel. Commun. Lett., 2019, 8, (3), pp. 921924.
    28. 28)
      • 57. Bariah, L., Muhaidat, S., Al-Dweik, A.: ‘Error performance of NOMA-based cognitive radio networks with partial relay selection and interference power constraints’, IEEE Trans. Commun., 2019, 67, (2), pp. 15861599.
    29. 29)
      • 33. Ding, Z., Dai, H., Poor, H.V.: ‘Relay selection for cooperative NOMA’, IEEE Wirel. Commun. Lett., 2016, 5, (4), pp. 416419.
    30. 30)
      • 12. Zhang, R., Ho, C.K.: ‘MIMO broadcasting for simultaneous wireless information and power transfer’, IEEE Trans. Wirel. Commun., 2013, 12, (5), pp. 19892001.
    31. 31)
      • 1. Esmaiel, H., Jiang, D.: ‘Zero-pseudorandom noise training OFDM’, Electron. Lett., 2014, 50, (9), pp. 650652.
    32. 32)
      • 31. Bhat, R.V., Motani, M., Lim, T.J.: ‘Hybrid NOMA for an energy harvesting MAC with non-ideal batteries and circuit power’, IEEE Trans. Wirel. Commun., 2019, 18, (8), pp. 39613973.
    33. 33)
      • 45. Jain, M., Sharma, N., Gupta, A., et al: ‘Performance analysis of NOMA assisted underwater visible light communication system’, IEEE Wirel. Commun. Lett., 2020.
    34. 34)
      • 44. Ws, P.K., Suraweera, H.A., Godaliyadda, R.I., et al: ‘Impact of receiver orientation on full-duplex relay aided NOMA underwater optical wireless systems’. IEEE Int. Conf. on Communications, Dublin, Ireland, 2020, pp. 17.
    35. 35)
      • 39. Bayrakdar, M.E.: ‘A smart insect pest detection technique with qualified underground wireless sensor nodes for precision agriculture’, IEEE Sens. J., 2019, 19, (22), pp. 1089210897.
    36. 36)
      • 22. Qureshi, F.U., Muhtaroğlu, A., Tuncay, K.: ‘Near-optimal design of scalable energy harvester for underwater pipeline monitoring applications with consideration of impact to pipeline performance’, IEEE Sens. J., 2017, 17, (7), pp. 19811991.
    37. 37)
      • 32. Kim, J., Lee, I.: ‘Non-orthogonal multiple access in coordinated direct and relay transmission’, IEEE Commun. Lett., 2015, 19, (11), pp. 20372040.
    38. 38)
      • 51. Liu, Z., Yang, T.: ‘On overhead reduction in time-reversed OFDM underwater acoustic communications’, IEEE J. Ocean. Eng., 2013, 39, (4), pp. 788800.
    39. 39)
      • 28. Yin, Y., Peng, Y., Liu, M., et al: ‘Dynamic user grouping-based NOMA over Rayleigh fading channels’, IEEE Access, 2019, 7, pp. 110964110971.
    40. 40)
      • 37. Yang, Z., Ding, Z., Wu, Y., et al: ‘Novel relay selection strategies for cooperative NOMA’, IEEE Trans. Veh. Technol., 2017, 66, (11), pp. 1011410123.
    41. 41)
      • 43. Ding, Z., Peng, M., Poor, H.V.: ‘Cooperative non-orthogonal multiple access in 5G systems’, IEEE Commun. Lett., 2015, 19, (8), pp. 14621465.
    42. 42)
      • 4. Xu, Y., Shen, C., Ding, Z., et al: ‘Joint beamforming and power-splitting control in downlink cooperative SWIPT NOMA systems’, IEEE Trans. Signal Process., 2017, 65, (18), pp. 48744886.
    43. 43)
      • 11. Zhou, X., Zhang, R., Ho, C.K.: ‘Wireless information and power transfer: architecture design and rate-energy tradeoff’, IEEE Trans. Commun., 2013, 61, (11), pp. 47544767.
    44. 44)
      • 46. Cheon, J., Cho, H.-S.: ‘Power allocation scheme for non-orthogonal multiple access in underwater acoustic communications’, Sensors, 2017, 17, (11), pp. 24652478.
    45. 45)
      • 42. Xu, P., Yang, Z., Ding, Z., et al: ‘Optimal relay selection schemes for cooperative NOMA’, IEEE Trans. Veh. Technol., 2018, 67, (8), pp. 78517855.
    46. 46)
      • 24. de Oliveira Filho, J.I., Trichili, A., Ooi, B.S., et al: ‘Toward self-powered internet of underwater things devices’, IEEE Commun. Mag., 2020, 58, (1), pp. 6873.
    47. 47)
      • 52. Song, H.: ‘An overview of underwater time-reversal communication’, IEEE J. Ocean. Eng., 2016, 41, (3), pp. 644655.
    48. 48)
      • 16. Liu, Y., Ding, Z., Elkashlan, M., et al: ‘Cooperative non-orthogonal multiple access with simultaneous wireless information and power transfer’, IEEE J. Sel. Areas Commun., 2016, 34, (4), pp. 938953.
    49. 49)
      • 2. Hussein, H., Esmaiel, H., Jiang, D.: ‘Fully generalised spatial modulation technique for underwater communication’, Electron. Lett., 2018, 54, (14), pp. 907909.
    50. 50)
      • 14. Chalise, B.K., Ma, W.-K., Zhang, Y.D., et al: ‘Optimum performance boundaries of OSTBC based AF-MIMO relay system with energy harvesting receiver’, IEEE Trans. Signal Process., 2013, 61, (17), pp. 41994213.
    51. 51)
      • 47. Makled, E.A., Yadav, A., Dobre, O.A., et al: ‘Hierarchical full-duplex underwater acoustic network: a NOMA approach’. OCEANS, Charleston, 2018, pp. 16.
    52. 52)
      • 9. Varshney, L.R.: ‘Transporting information and energy simultaneously’. IEEE Int. Symp. on Information Theory, Toronto, Canada, 2008, pp. 16121616.
    53. 53)
      • 48. Bocus, M.J., Agrafiotis, D., Doufexi, A.: ‘Non-orthogonal multiple access (NOMA) for underwater acoustic communication’. 88th Vehicular Technology Conf., Chicago, 2018, pp. 15.
    54. 54)
      • 41. Yuan, Y., Xu, P., Yang, Z., et al: ‘Joint robust beamforming and power-splitting ratio design in SWIPT-based cooperative NOMA systems with CSI uncertainty’, IEEE Trans. Veh. Technol., 2019, 68, (3), pp. 23862400.
    55. 55)
      • 20. Wang, R., Yadav, A., Makled, E.A., et al: ‘Optimal power allocation for full-duplex underwater relay networks with energy harvesting: A reinforcement learning approach’, IEEE Wirel. Commun. Lett., 2019, 9, (2), pp. 223227.
    56. 56)
      • 27. Liu, G., Wang, Z., Hu, J., et al: ‘Cooperative NOMA broadcasting/multicasting for low-latency and high-reliability 5G cellular V2X communications’, IEEE Internet Things J., 2019, 6, (5), pp. 78287838.
    57. 57)
      • 3. Esmaiel, H., Qasem, Z.A., Sun, H., et al: ‘Underwater image transmission using spatial modulation unequal error protection for internet of underwater things’, Sensors, 2019, 19, (23), p. 5271.
    58. 58)
      • 38. Bayrakdar, M.E.: ‘Cooperative communication based access technique for sensor networks’, Int. J. Electron., 2020, 107, (2), pp. 212225.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-com.2020.0053
Loading

Related content

content/journals/10.1049/iet-com.2020.0053
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address