access icon free Outage performance analysis of relay-aided non-orthogonal multiple access networks with energy harvesting schemes

In this study, the performance of wirelessly powered relay-aided non-orthogonal multiple access networks is investigated in terms of outage probability. Specifically, two relay selection strategies, i.e. two-stage relay selection (TRS) and maximum energy harvesting relay selection (MEHS), and two energy harvesting scenarios, i.e. time switching (TS) and power splitting (PS) are considered. In each setup, outage probabilities' analytical expressions and their asymptotics are derived. Monte-Carlo simulations are also carried out to verify the correctness of the analysis. The results show that regardless of relay selection and energy harvesting strategies, increasing transmit power can improve the proposed system performance. However, TRS can achieve a full diversity order, while MEHS has a unit diversity order. Besides, the results recommend parameter selections of PS and TS coefficients for optimal performance in term of outage probability.

Inspec keywords: Monte Carlo methods; multi-access systems; telecommunication network reliability; relay networks (telecommunication); telecommunication power management; energy harvesting; diversity reception; probability; telecommunication switching

Other keywords: outage performance analysis; maximum energy harvesting relay selection; optimal performance; Monte-Carlo simulation; power splitting; MEHS; two-stage relay selection strategies; time switching; wirelessly powered relay-aided nonorthogonal multiple access networks; energy harvesting strategies; parameter selections; outage probability; system performance

Subjects: Radio links and equipment; Energy harvesting; Reliability; Energy harvesting; Multiple access communication; Communication switching; Telecommunication systems (energy utilisation); Probability theory, stochastic processes, and statistics; Monte Carlo methods

References

    1. 1)
      • 17. Wang, Z., Peng, Z.: ‘Secrecy performance analysis of relay selection in cooperative noma systems’, IEEE Access, 2019, PP, pp. 11.
    2. 2)
      • 15. Liaqat, M., Noordin, K.A., Latef, T.A., et al: ‘Relay selection schemes for cooperative NOMA (C-NOMA) with simultaneous wireless information and power transfer (SWIPT)’, Phys. Commun., 2019, 36, p. 100823.
    3. 3)
      • 19. Prudnikov, A.P., Brychkov, Y., Marichev, O.I.: ‘Integrals and series’, vol. 3 (Gordon and Breach, USA, 1989).
    4. 4)
      • 5. Ding, Z., Dai, H., Poor, H.V.: ‘Relay selection for cooperative NOMA’, IEEE Wirel. Commun. Lett., 2016, 5, (4), pp. 416419.
    5. 5)
      • 9. Nguyen, N., Duong, T.Q., Ngo, H.Q., et al: ‘Secure 5G wireless communications: a joint relay selection and wireless power transfer approach’, IEEE Access, 2016, 4, pp. 33493359.
    6. 6)
      • 6. Jameel, F., Wyne, S., Nawaz, S.J., et al: ‘Outage analysis of relay-aided non-orthogonal multiple access with partial relay selection’. Proc. 2018 IEEE Globecom Workshops (GC Wkshps), Abu Dhabi, UAE, 2018, pp. 16.
    7. 7)
      • 12. Tran, H.Q., Phan, C.V., Vien, Q.: ‘On the performance of regenerative relaying for SWIPT in NOMA systems’. Proc. 2019 26th Int. Conf. on Telecommunication (ICT), Hanoi, Vietnam, 2019, pp. 15.
    8. 8)
      • 7. Li, Y., Amarasuriya, G.: ‘Relay-aided massive MIMO NOMA downlink’. Proc. 2018 IEEE Global Communication Conf., Abu Dhabi, UAE, 2018, pp. 17.
    9. 9)
      • 1. Dai, L., Wang, B., Yuan, Y., et al: ‘Non-orthogonal multiple access for 5G: solutions, challenges, opportunities, and future research trends’, IEEE Commun. Mag., 2015, 53, (9), pp. 7481.
    10. 10)
      • 14. Hoang, T.M., Tan, N.T., Hoang, N.H., et al: ‘Performance analysis of decode-and-forward partial relay selection in NOMA systems with RF energy harvesting’, Wirel. Netw., 2019, 25, (8), pp. 45854595.
    11. 11)
      • 21. Gradshteyn, I.S., Ryzhik, I.M.: ‘Table of integrals, series, and products’ (Academic Press, USA, 1980).
    12. 12)
      • 3. Saito, Y., Kishiyama, Y., Benjebbour, A., et al: ‘Non-orthogonal multiple access (NOMA) for cellular future radio access’. Proc. 2013 IEEE Vehicular Technology Conf. (VTC), Dresden, Germany, 2013, pp. 15.
    13. 13)
      • 11. Ashraf, M., Shahid, A., Jang, J.W., et al: ‘Energy harvesting non-orthogonal multiple access system with multi-antenna relay and base station’, IEEE Access, 2017, 5, pp. 1766017670.
    14. 14)
      • 20. Kwon, H., Birdsall, T.: ‘Channel capacity in bits per joule’, IEEE J. Ocean. Eng., 1986, 11, (1), pp. 9799.
    15. 15)
      • 10. Mnif, M.M., Mnif, H., Loulou, M.: ‘New design of RF-DC rectifier circuit for radio frequency energy harvesting’. Proc. 2016 IEEE International Conf. Electronic Circuits and Systems, Monte Carlo, Monaco, 2016, pp. 14.
    16. 16)
      • 16. Nasir, A.A., Zhou, X., Durrani, S., et al: ‘Relaying protocols for wireless energy harvesting and information processing’, IEEE Trans. Wirel. Commun., 2013, 12, (7), pp. 36223636.
    17. 17)
      • 13. Guo, C., Zhao, L., Feng, C., et al: ‘Energy harvesting enabled NOMA systems with full-duplex relaying’, IEEE Trans. Veh. Technol., 2019, 68, (7), pp. 71797183.
    18. 18)
      • 8. Zhang, R., Ho, C.K.: ‘MIMO broadcasting for simultaneous wireless information and power transfer’, IEEE Trans. Wirel. Commun., 2013, 12, (5), pp. 19892001.
    19. 19)
      • 2. Islam, S.M.R., Avazov, N., Dobre, O.A., et al: ‘Power-domain non-orthogonal multiple access (NOMA) in 5G systems: potentials and challenges’, IEEE Commun. Surv. Tutor., 2017, 19, (2), pp. 721742.
    20. 20)
      • 18. Nguyen, N., Dobre, O.A., Nguyen, L.D., et al: ‘Secure downlink massive MIMO NOMA network in the presence of a multiple-antenna eavesdropper’. Proc. 2019 IEEE Int Conf. Communications (ICC), Shanghai, China, 2019, pp. 16.
    21. 21)
      • 4. Aruma Baduge, M., Vaezi, G.A., Liu, Y., et al: ‘Interplay between NOMA and other emerging technologies: a survey’, IEEE Trans. Cognit. Commun. Netw., 2019, 5, (4), pp. 900919.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-com.2020.0052
Loading

Related content

content/journals/10.1049/iet-com.2020.0052
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading