access icon free Efficient frequency-domain linear distortion equaliser in faster-than-Nyquist systems

Faster-than-Nyquist (FTN) signalling is regarded as a promising technology in satellite communications for the past few years, however, existing inter-symbol interference (ISI) elimination algorithms for FTN signalling cannot eliminate the linear distortion caused by the input-multiplexing and output-multiplexing filters, which are very common in satellite communications. On the strength of the fractionally-spaced equaliser (FSE), the authors propose a precoding-based frequency-domain linear distortion equaliser (PFLDE) to eliminate the above-mentioned linear distortion in FTN systems. On the one hand, by virtue of fast Fourier transform (FFT) and inverse FFT, the proposed PFLDE lends itself naturally to high-throughput parallel architectures, which are quite essential in high throughput satellite communications. On the other hand, the mean square error performance of the proposed PFLDE is superior to that of the existing time-domain FSEs. Furthermore, combining PFLDE with the existing ISI elimination algorithms for FTN signalling, the satisfactory bit error ratio performance can be obtained.

Inspec keywords: mean square error methods; satellite communication; precoding; parallel architectures; telecommunication computing; equalisers; inverse transforms; frequency-domain analysis; interference suppression; intersymbol interference; fast Fourier transforms; error statistics

Other keywords: precoding-based frequency-domain linear distortion equaliser; intersymbol interference elimination algorithms; bit error ratio performance; input-multiplexing; output-multiplexing filters; PFLDE; FTN systems; FTN signalling; fast Fourier transform; faster-than-Nyquist signalling; inverse FFT; high throughput satellite communications; mean square error performance; faster-than-Nyquist systems; high-throughput parallel architectures; ISI elimination algorithms

Subjects: Other topics in statistics; Codes; Other topics in statistics; Integral transforms in numerical analysis; Communications computing; Interpolation and function approximation (numerical analysis); Satellite communication systems; Communication channel equalisation and identification; Parallel architecture; Interpolation and function approximation (numerical analysis); Integral transforms in numerical analysis; Electromagnetic compatibility and interference

References

    1. 1)
      • 7. Li, S., Bai, B., Zhou, J., et al: ‘Reduced-complexity equalization for faster-than-Nyquist signaling: new methods based on Ungerboeck observation model’, IEEE Trans. Commun., 2018, 66, (3), pp. 11901204.
    2. 2)
      • 4. Liveris, A.D., Georghiades, C.N.: ‘Exploiting faster-than-Nyquist signaling’, IEEE Trans. Commun., 2003, 51, (9), pp. 15021511.
    3. 3)
      • 17. Hong, S.B., Seo, J.: ‘Performance enhancement of faster-than-Nyquist signaling based single-carrier frequency-domain equalization systems’, IEEE Trans. Broadcast., 2016, 62, (4), pp. 918935.
    4. 4)
      • 10. Li, Q., Gong, F.K., Song, P.Y., et al: ‘Pre-equalized interference cancellation for faster-than-Nyquist signaling’, IEEE Access, 2019, 7, pp. 7786877876.
    5. 5)
      • 16. Piemontese, A., Modenini, A., Colavolpe, G., et al: ‘Improving the spectral efficiency of nonlinear satellite systems through time-frequency packing and advanced receiver processing’, IEEE Trans. Commun., 2013, 61, (8), pp. 34043412.
    6. 6)
      • 25. Park, S.I., Lee, G., Kim, H.M., et al: ‘ADT-based UHDTV transmission for the existing ATSC terrestrial DTV broadcasting’, IEEE Trans. Broadcast., 2015, 61, (1), pp. 105110.
    7. 7)
      • 15. Barbieri, A., Fertonani, D., Colavolpe, G.: ‘Time-frequency packing for linear modulations: spectral efficiency and practical detection schemes’, IEEE Trans. Commun., 2009, 57, (10), pp. 29512959.
    8. 8)
      • 14. Shi, Q., Wu, N., Ma, X., et al: ‘Frequency-domain joint channel estimation and decoding for faster-than-Nyquist signaling’, IEEE Trans. Commun., 2018, 66, (2), pp. 781795.
    9. 9)
      • 22. ‘Implementation Guidelines for the Second Generation System for Broadcasting, Interactive Services,News Gathering and Other Broadband Satellite Applications; Part II: S2-Extensions (DVB-S2X)’. (Digital Video Broadcasting (DVB) Std. ETSI TR 102 376-2), 2015.
    10. 10)
      • 9. Li, Q., Gong, F.K., Song, P.Y., et al: ‘Symbol-based multi-layer iterative successive interference cancellation for faster-than-Nyquist signaling’, IET Commun., 2020, 14, (2), pp. 243250.
    11. 11)
      • 20. ‘Second Generation Framing Structure, Channel Coding and Modulation Systems for Broadcasting, Interactive Services, News Gathering and Other Broadband Satellite Applications; Part II: S2-Extensions (DVB-S2X)’. (Digital Video Broadcasting (DVB) Std. ETSI EN 302 307-2), 2014.
    12. 12)
      • 3. Hajela, D.: ‘On computing the minimum distance for faster-than-Nyquist signaling’, IEEE Trans. Inf. Theory, 1990, 36, (2), pp. 289295.
    13. 13)
      • 1. Mazo, J.E.: ‘Faster-than-Nyquist signaling’, Bell Syst. Tech. J., 1975, 54, (8), pp. 14511462.
    14. 14)
      • 6. Prlja, A., Anderson, J.B.: ‘Reduced-complexity receivers for strongly narrowband intersymbol interference introduced by faster-than-Nyquist signaling’, IEEE Trans. Commun., 2012, 60, (9), pp. 25912601.
    15. 15)
      • 23. Dimitrov, S.: ‘Non-linear distortion cancellation and symbol-based equalization in satellite forward links’, IEEE Trans. Wirel. Commun., 2017, 16, (7), pp. 44894502.
    16. 16)
      • 5. Prlja, A., Anderson, J.B., Rusek, F.: ‘Receivers for faster-than-Nyquist signaling with and without turbo equalization’. Proc. IEEE Int. Symp. Information Theory, Toronto, ON, Canada, 2008, pp. 464468.
    17. 17)
      • 26. Zia-Chahabi, O., Le Bidan, R., Morvan, M., et al: ‘Efficient frequency-domain implementation of block-LMS/CMA fractionally-spaced equalization for coherent optical communications’, IEEE Photon. Technol. Lett., 2011, 23, (22), pp. 16971699.
    18. 18)
      • 2. Mazo, J.E., Landau, H.J.: ‘On the minimum distance problem for faster-than-Nyquist signaling’, IEEE Trans. Inf. Theory, 1988, 34, (6), pp. 14201427.
    19. 19)
      • 18. ‘Second generation framing structure, channel coding and modulation systems for broadcasting, interactive services, news gathering and other broadband satellite applications’. (Digital Video Broadcasting (DVB) Std. ETSI EN 302 307 vl.l.1), 2004.
    20. 20)
    21. 21)
      • 19. Kim, P., Oh, D.: ‘Receiver architecture for FTN signaling transmission in DVB-S2’. Proc. IEEE 82nd Vehicular Technology Conf., Boston, MA, USA., 2015, pp. 15.
    22. 22)
      • 11. Sugiura, S.: ‘Frequency-domain equalization of faster-than-Nyquist signaling’, IEEE Wirel. Commun. Lett., 2013, 2, (5), pp. 555558.
    23. 23)
      • 12. Sugiura, S., Hanzo, L.: ‘Frequency-domain-equalization-aided iterative detection of faster-than-Nyquist signaling’, IEEE Trans. Veh. Technol., 2015, 64, (5), pp. 21222128.
    24. 24)
      • 8. Bedeer, E., Ahmed, M.H., Yanikomeroglu, H.: ‘A very low complexity successive symbol-by-symbol sequence estimator for faster-than-Nyquist signaling’, IEEE Access, 2017, 5, pp. 74147422.
    25. 25)
      • 24. Lee, J., Yun, K., Kim, K.: ‘A 3DTV broadcasting scheme for high-quality stereoscopic content over a hybrid network’, IEEE Trans. Broadcast., 2013, 59, (2), pp. 281289.
    26. 26)
      • 13. Ishihara, T., Sugiura, S.: ‘Iterative frequency-domain joint channel estimation and data detection of faster-than-Nyquist signaling’, IEEE Trans. Wirel. Commun., 2017, 16, (9), pp. 62216231.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-com.2019.1347
Loading

Related content

content/journals/10.1049/iet-com.2019.1347
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading