access icon free SDN-enabled Cognitive Radio Network Architecture

In this study, a new network architecture based on the software-defined networking (SDN) approach is proposed for cognitive radio networks (CRNs). The proposed network architecture [software-defined cognitive radio (SDCR)] assumes the responsibilities of network resource management for CRNs and provides a dynamic spectrum management mechanism with an SDN controller. In this way, the dependency of network users on base stations is reduced in dynamic cognitive radio environments, and network performance is improved by delegating some of the management responsibilities to the controller. The performance analysis of the SDCR is carried out through the RIVERBED MODELER simulation software. End-to-end delays and packet loss rates for the primary network are investigated by selecting different offered loads for secondary users. In addition, for the equal and different packet sizes, primary network and SDCR throughput are examined and network performance is improved by using channel bonding technique. The results indicate that the SDCR outperforms the traditional CRN architecture, in terms of the throughput, and the proposed architecture can provide effective performance. Bit error rate parameter is investigated in the study and the energy consumption parameter of the SDCR is also compared with the cognitive radio wireless network.

Inspec keywords: cognitive radio; error statistics; telecommunication control; telecommunication network management; wireless channels; telecommunication power management; radio spectrum management; software radio

Other keywords: base stations; bit error rate parameter; SDN-enabled cognitive radio networks; network resource management; network architecture software-defined cognitive radio networks; software-defined networking approach; cognitive radio environments; SDN controller; channel bonding technique; RIVERBED MODELER simulation software; spectrum management; cognitive radio wireless network

Subjects: Control applications in radio and radar; Radio links and equipment; Other topics in statistics; Other topics in statistics; Network management; Probability theory, stochastic processes, and statistics; Telecommunication systems (energy utilisation)

References

    1. 1)
      • 34. Hu, F., Hao, Q., Bao, K.: ‘A survey on software defined networking (SDN) and openflow: from concept to implementation’, IEEE Commun. Surv. Tutor., 2014, 16, (4), pp. 21812206.
    2. 2)
      • 14. Karaman, M.A., Gorkemli, B., Tatlicioglu, S., et al: ‘Quality of service control and resource prioritization with software defined networking’. 1st IEEE Conf. on Network Softwarization: Software-Defined Infrastructures for Networks, Clouds, IoT and Services, NETSOFT 2015, London, UK, Apr 2015, pp. 16.
    3. 3)
      • 3. Nunes, B.A.A., Mendonca, M., Nguyen, X.N., et al: ‘A survey of software-defined networking: past, present, and future of programmable networks’, IEEE Commun. Surv. Tutor., 2014, 16, (3), pp. 16171634.
    4. 4)
      • 31. Akyildiz, I.F., Lee, W.-Y., Vuran, M.C., et al: ‘A survey on spectrum management in cognitive radio networks’, IEEE Commun. Mag., 2008, 46, (4), pp. 4048.
    5. 5)
      • 4. Namal, S., Ahmad, I., Saud, S., et al: ‘Implementation of OpenFlow based cognitive radio network architecture: SDN&R’, Wirel. Netw., 2016, 22, pp. 663677.
    6. 6)
      • 5. Zubow, A., Doring, M., Chwalisz, M., et al: ‘A SDN approach to spectrum brokerage in infrastructure-based cognitive radio networks’. 2015 IEEE Int. Symp. on Dynamic Spectrum Access Networks, DySPAN 2015, Stockholm, Sweden, 2015, pp. 375384.
    7. 7)
      • 23. Wang, B., Liu, K.J.R.: ‘Advances in cognitive radio networks: a survey’, IEEE J. Sel. Top. Signal Process., 2011, 5, (1), pp. 523.
    8. 8)
      • 6. Sun, G., Liu, G., Wang, Y.: ‘SDN architecture for cognitive radio networks’. 2014 1st Int. Workshop on Cognitive Cellular Systems, CCS 2014, Rhine River, Germany, Sept 2014, pp. 15.
    9. 9)
      • 10. Costanzo, S., Galluccio, L., Morabito, G., et al: ‘Software defined wireless networks: unbridling SDNs’. European Workshop on Software Defined Networking, Darmstadt, Germany, Oct 2012, pp. 16.
    10. 10)
      • 36. Cicioğlu, M., Çalhan, A.: ‘SDN-based wireless body area network routing algorithm for healthcare architecture’, ETRI J., 2019, 41, (4), pp. 452464.
    11. 11)
      • 32. Üstünbaş, S., Aygölü, Ü.: ‘BER analysis of non-orthogonal multiple access-based cognitive butterfly network’, Electron. Lett., 2020, 56, (7), pp. 357360.
    12. 12)
      • 24. Cabric, D., Mishra, S.M., Brodersen, R.W.: ‘Implementation issues in spectrum sensing for cognitive radios’. 2004 Conf. Records of Thirty-Eighth Asilomar Conf. on Signals, Systems and Computers, Pacific Grove, CA, USA, Nov 2004, pp. 772776.
    13. 13)
      • 8. Kim, H., Feamster, N.: ‘Improving network management with software defined networking’, IEEE Commun. Mag., 2013, 51, (2), pp. 114119.
    14. 14)
      • 30. Toma, A., Krayani, A., Farrukh, M., et al: ‘AI-based abnormality detection at the PHY-layer of cognitive radio by learning generative models’, IEEE Trans. Cogn. Commun. Netw., 2020, 6, (1), pp. 2134.
    15. 15)
      • 16. Cicioglu, M., Cicioglu, S., Calhan, A.: ‘Performance analysis of software-defined network approach for wireless cognitive radio networks’. 26th Signal Processing and Communications Applications Conf. (SIU), Izmir, Turkey, May 2018, pp. 14.
    16. 16)
      • 37. SteelCentral: ‘Riverbed’. Available at https://www.riverbed.com/gb/products/steelcentral/steelcentral-riverbed-modeler.html, accessed March 2018.
    17. 17)
      • 1. Kreutz, D., Ramos, F.M.V., Esteves Verissimo, P., et al: ‘Software-defined networking: a comprehensive survey’, Proc. IEEE, 2015, 103, (1), pp. 1476.
    18. 18)
      • 9. Chen, T., Matinmikko, M., Chen, X., et al: ‘Software defined mobile networks: concept, survey, and research directions’, IEEE Commun. Mag., 2015, 53, (11), pp. 126133.
    19. 19)
      • 15. Cicioğlu, M., Çalhan, A.: ‘HUBsFLOW: A novel interface protocol for SDN-enabled WBANs’, Comput. Netw., 2019, 160, pp. 105117.
    20. 20)
      • 2. Akyildiz, I.F., Lee, A., Wang, P., et al: ‘A roadmap for traffic engineering in SDN-OpenFlow networks’, Comput. Netw., 2014, 71, pp. 130.
    21. 21)
      • 22. Yucek, T., Arslam, H.: ‘A survey of spectrum sensing algorithms for cognitive radio applications’. IEEE Commun. Surv. Tutor., 2009, 11, (1), pp. 116130.
    22. 22)
      • 27. Yilmaz, H., Tugcu, T., Alagöz, F., et al: ‘Radio environment map as enabler for practical cognitive radio networks’, IEEE Commun. Mag., 2013, 51, (12), pp. 162169.
    23. 23)
      • 21. Zhu, P., Li, J., Wang, D., et al: ‘Machine-learning-based opportunistic spectrum access in cognitive radio networks’, IEEE Wirel. Commun., 2020, 27, (1), pp. 3844.
    24. 24)
      • 25. Zhang, W., Yang, J., Zhang, G., et al: ‘TV white space and its applications in future wireless networks and communications: a survey’, IET Commun., 2018, 12, (20), pp. 25212532.
    25. 25)
      • 11. Tayyaba, S.K., Shah, M.A., Khan, O.A., et al: ‘Software defined network (SDN) based internet of things (IoT)’. Proc. Int. Conf. on Future Networks and Distributed Systems – ICFNDS ‘17’, Cambridge, United Kingdom, July 2017, pp. 18.
    26. 26)
      • 29. Cormio, C., Chowdhury, K.R.: ‘A survey on MAC protocols for cognitive radio networks’, Ad Hoc Netw., 2009, 7, (7), pp. 13151329.
    27. 27)
      • 26. Thoppian, M., Venkatesan, S., Prakash, R.: ‘CSMA-based MAC protocol for cognitive radio networks’. IEEE Int. Symp. on a World of Wireless, Mobile and Multimedia Networks, 2007, WoWMoM 2007, Espoo, Finland, June 2007, pp. 18.
    28. 28)
      • 28. Marinho, J., Monteiro, E.: ‘Cognitive radio: survey on communication protocols, spectrum decision issues, and future research directions’, Wireless Netw., 2012, 18, (2), pp. 147164.
    29. 29)
      • 35. McKeown, N., Anderson, T., Balakrishnan, H., et al: ‘Openflow: enabling innovation in campus networks’, ACM SIGCOMM Comput. Commun. Rev., 2008, 38, (2), p. 69.
    30. 30)
      • 12. Jain, R., Paul, S.: ‘Network virtualization and software defined networking for cloud computing: a survey’, IEEE Commun. Surv. Tutor., 2013, 51, (11), pp. 2431.
    31. 31)
      • 20. Bayrakdar, M.E.: ‘Exploiting cognitive wireless nodes for priority-based data communication in terrestrial sensor networks’, ETRI J., 2020, 42, (1), pp. 3645.
    32. 32)
      • 17. Cicioğlu, M., Bayrakdar, M.E., Çalhan, A.: ‘Performance analysis of a new MAC protocol for wireless cognitive radio networks’, Wirel. Pers. Commun., 2019, 108, pp. 6786.
    33. 33)
      • 18. Al-Ayyoub, M., Jararweh, Y., Doulat, A., et al: ‘Virtualization-based cognitive radio networks’, J. Syst. Softw., 2016, 117, pp. 1529.
    34. 34)
      • 19. Akyildiz, I.F., Lee, W.Y., Vuran, M.C., et al: ‘Next generation/dynamic spectrum access/cognitive radio wireless networks: a survey’, Comput. Netw., 2006, 50, (13), pp. 21272159.
    35. 35)
      • 33. Feamster, N., Rexford, J., Zegura, E.: ‘The road to SDN: an intellectual history of programmable networks’, ACM Sigcomm Comput. Commun., 2014, 44, (2), pp. 8798.
    36. 36)
      • 13. Hu, Y.N., Wang, W.D., Gong, X.Y., et al: ‘On the placement of controllers in software-defined networks’, J. China Univ. Posts Telecommun., 2012, 19, (2), pp. 92171.
    37. 37)
      • 7. Jararweh, Y., Al-Ayyoub, M., Doulat, A., et al: ‘SD-CRN: software defined cognitive radio network framework’. Proc. 2014 IEEE Int. Conf. on Cloud Engineering, IC2E 2014, Boston, MA, USA, Mar 2014, pp. 592597.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-com.2019.1346
Loading

Related content

content/journals/10.1049/iet-com.2019.1346
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading